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ABSTRACT 

 Obesity is characterized by decreased production of the anti-inflammatory hormone, 

adiponectin, increased secretion of pro-inflammatory cytokines and chemokines, and 

increased risk of colon cancer. Although adiponectin has been negatively associated with 

colorectal cancer development in human population, the role of adiponectin in colon 

tumorigenesis is unknown. The anti-inflammatory dietary polyphenol, resveratrol (RSV), 

increases circulating adiponectin concentrations in vivo, and has been shown to be effective 

in prevention of colorectal cancer and obesity-related morbidities. However, the effect of 

RSV supplementation on obesity-linked colorectal cancer had not been previously reported.  

We first used an adiponectin knockout mouse model to investigate the role of 

adiponectin in obesity-associated colorectal cancer. In this study, we showed that in the 

azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced mouse model of colorectal 

cancer, adiponectin genotype, high fat diet, and gender regulate colon carcinogenesis. 

Specifically, development of early lesions (aberrant crypt and mucin-depleted foci) was 

dependent on adiponectin genotype whereas the development of advanced lesions 

(intramucosal and invasive carcinomas) was dependent on diet and sex of the mice. 

Interestingly, adiponectin wildtype (Wt) mice had a greater number of total lesions than the 

knockout (KO) mice suggesting that under pro-inflammatory conditions, the presence of 

adiponectin promotes colonic tumorigenesis.  

We next investigated the interaction between RSV and adiponectin in early colon 

tumorigenesis under obesigenic conditions. In this study, we showed that low-dose dietary 

RSV (20 mg/kg diet) had a tendency to decrease the number of aberrant crypt foci in Wt but 

not KO mice. Similarly, RSV had a tendency to reduce circulating pro-inflammatory 
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cytokine and insulin concentrations, prevent adipocyte hypertrophy, and increase lean mass 

in Wt mice only. Taken together, RSV had a tendency to interact with adiponectin to 

attenuate tumorigenesis and the metabolic effects of obesity in vivo. We further investigated 

the interaction between adiponectin and RSV in vitro through the use of adipocytes derived 

from adiponectin KO and Wt mice and a colon cancer cell line. Here we showed that in 

adipocytes but not colon cancer cells, the anti-inflammatory effects of RSV are dependent on 

adiponectin.  

Finally, we compared the effects of Sirtuin 1 (Sirt1) and AMP-activated protein 

kinase (AMPK) inhibitors in the attenuation of LPS-induced inflammation by RSV among 

human adipocyte, monocyte, and colon cancer cell lines. Results obtained from this series of 

cell culture experiments, suggests that RSV acted through different mechanisms to inhibit 

chronic LPS-induced inflammation among cell types. In adipocytes, RSV inhibited LPS-

induced inflammation and lipolysis, and Sirt1 and AMPK inhibitors reversed this, 

respectively. In HT29 colon cancer cells, RSV inhibited ROS and proliferation, and the Sirt1 

inhibitor, but not the AMPK inhibitor reversed this. Conversely, RSV’s inhibition of LPS-

induced inflammation in U937 monocytes was not reversed by Sirt1 or AMPK inhibitors. 

Thus, while Sirt1 appears to be important in the effects of RSV in adipocytes and colon 

cancer cells, we did not identify a role for Sirt1 or AMPK in RSV’s anti-inflammatory action 

in monocytes.  

Collectively, our data suggests that adiponectin, diet, and gender interact in the 

development of obesity-associated colon tumorigenesis under pro-inflammatory conditions. 

Moreover, we showed that RSV has a tendency to interact with adiponectin to attenuate 

tumorigenesis and improve the metabolic and inflammatory profile in obesity. These findings 
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support the potential use of RSV as an anti-inflammatory dietary supplement aimed at 

prevention of obesity-associated colon tumorigenesis through anti-inflammatory function in 

adipose and colon tissues. Continued research is warranted to further elucidate the role of 

adiponectin and the cell- and tissue-specific actions of RSV in obesity-associated colon 

cancer. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

Introduction 

The prevalence of obesity in developed countries is approaching epidemic levels with 

over one third of the United States population now classified as obese (1). Obesity poses 

serious health and economic concerns in the treatment of co-morbidities such as colorectal 

cancer (2,3,4). The American Cancer Society estimates 102,900 new cases of colon cancer 

and 51,370 colon cancer related deaths in the year 2010 (5). Of these, overweight and obesity 

account for an estimated 14% of cancer deaths in men and 20% in women (6).  

Obesity-associated co-morbidities are attributed to chronic inflammation 

characteristic of an obese metabolic state. As adipocyte size expands in obesity, increased 

adipocyte necrosis and subsequent inflammation signals the infiltration of macrophages into 

the tissue (7). The adipocytes and immune cells in the dysfunctional adipose tissue together 

produce a host of pro-inflammatory mediators. This obese adipokine profile is characterized 

by increased expression of pro-inflammatory adipokines, interleukin-6 (IL-6), tumor necrosis 

factor α (TNFα), macrophage chemotactic protein 1 (MCP-1), and decreased expression of 

the anti-inflammatory adipokine, adiponectin. Furthermore, saturated fatty acids (SFAs) 

released by hypertrophic adipocytes provide additional inflammatory stimulation through 

interaction with toll like receptor 4 (TLR4) and subsequent nuclear factor-κ B (NF-κB) and 

activator protein 1 (AP-1) activation in multiple cell types (8). Collectively, the adipokine 

profile contributes to obesity-associated tumorigenesis through increased oxidative stress, 

proto-oncogene activation, cell proliferation, and immune cell activation.  

In the colon, TLR4 expression is elevated in obesity and is associated with 

adenocarcinoma and increased risk of disease progression (9,10). Increased TLR4 expression 
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in multiple cell types allows for transcription of pro-survival and pro-inflammatory genes 

such as IL-6 and TNFα that in turn directly propagate tumorigenesis (11,12). It has been 

suggested that the obesity-associated decrease in circulating adiponectin concentration also 

plays a role in colon cancer development. This has recently been supported by 

epidemiological studies reporting a negative correlation between circulating adiponectin 

concentrations and risk of colon cancer (13,14). However, adiponectin knockout mouse 

models have yielded controversial results regarding the role of adiponectin in colon 

tumorigenesis (15,16,17). The discrepancies are likely dependent on the different 

tumorigenesis models, inflammatory stimulus, and dietary conditions. 

Resveratrol (RSV) is a polyphenol found in grapes and red wine that has been shown 

to have a preventative role in metabolic dysregulation associated with obesity as well as 

colon tumorigenesis. These functions of RSV are attributed to activation of AMP-activated 

protein kinase (AMPK) and sirtuin 1 (SIRT1). In mice fed a high calorie obesigenic diet, 

RSV supplementation improved metabolic profile and decreased reactive oxygen species 

(ROS) and inflammation (18). Furthermore, dietary RSV has been shown to increase 

circulating adiponectin concentrations (19). The effects of RSV on colitis and colon 

tumorigenesis have been well identified in rodent models. To this end, RSV has been 

demonstrated to inhibit colon cancer cell proliferation and macrophage infiltration through 

attenuation of iNOS expression and NF-B activity (20,21,22). 

 Taken together, this body of literature suggests that obesity-associated colon cancer is 

initiated in part through the pro-inflammatory adipokine environment that includes decreased 

adiponectin expression. Moreover, literature suggests that RSV is an effective means of 

attenuating both the metabolic dysregulation associated with obesity and the development of 
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colon cancer under normal diet conditions through inhibition of NF-κB activity. However, 

the role of RSV in obesity-associated tumorigenesis has not been reported. Furthermore, the 

mechanism of RSV action in cell types involved in obesity-associated colon carcinogenesis 

has not been fully elucidated. A mechanistic understanding of the interaction between 

adipose dysfunction and colon tumorigenesis and the role of RSV in these tissues is critical 

for the development of therapies targeting obesity-associated colon cancer. 

Objective and Specific Aims 

 Our objective is to understand how adiponectin and RSV and their interaction 

regulate obesity-associated colorectal cancer. Our central hypothesis is that adiponectin 

regulates colon tumorigenesis through inhibition of inflammation in colonic epithelial cells. 

We further hypothesize that dietary RSV attenuates colon tumorigenesis in part through 

increased adiponectin concentrations and subsequent disruption of NF-κB and AP-1 

transcription factor activity (Figure 1). The rationale for our work is that an understanding 

of the mechanisms by which RSV regulates obesity-associated colon tumorigenesis will 

promote the development of future therapies targeting pathways involved in RSV signaling. 

Our specific aims are to i) identify the role of adiponectin in obesity-associated colon 

tumorigenesis, ii) determine the importance of adiponectin in attenuation of obesity-

associated colon tumorigenesis by RSV, and iii) elucidate mechanisms by which RSV acts to 

reduce inflammation in cell types involved in obesity-associated colon cancer. 
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Figure 1. The proposed roles of RSV and adiponectin in attenuation of colonic 

tumorigenesis.  

 

Adipocyte hypertrophy results in increased production of cytokines and 

chemokines and decreased production of the anti-inflammatory adipokine, 

adiponectin. Concurrently, macrophages are signaled to infiltrate the tissue to clear 

necrotic adipocytes, which release SFAs and ROS in addition to inflammatory 

mediators. The systemic pro-inflammatory environment characteristic of adipose 

dysfunction promotes activation of TLR4 and the transcription factors NF-κB and 

AP-1 in colonic tissue. This in turn drives tumorigenesis through production of 

pro-survival and pro-inflammatory gene products. We hypothesize that RSV 

inhibits this process through action at adipose and colon tissues. In adipose tissue, 

we hypothesize that RSV increases production of adiponectin and decreases pro-

inflammatory gene expression thus attenuating NF-κB and AP-1 activation in the 

colon. Furthermore, we hypothesize that RSV signals directly at the colon to 

inhibit these pathways by Sirt1 and AMPK activation.   
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CHAPTER 2. REVIEW OF LITERATURE 

Obesity and Co-Morbidities: Role of Chronic Inflammation 

Obesity prevalence and implications 

The incidence of obesity continues to affect a growing proportion of the United States 

population. In 2007-2008, the prevalence of adult obesity (BMI  30) in the United States 

was estimated to be 32.2% for men and 35.5% for women (1). Combined with obesity, the 

prevalence of overweight adults (BMI  25) was a staggering 68% for the same time period. 

This high prevalence of overweight and obesity poses serious burdens both on the health and 

economies of developed countries (2). While the populations of developing countries have a 

lower incidence of obesity than those of developed countries, the rate of obesity is also 

climbing in these countries with highest prevalence in women and rural communities (3,4).   

Visceral or central adiposity is highly correlated with metabolic syndrome (5). The 

third Report of the National Cholesterol Education Program Expert Panel defines metabolic 

syndrome as the presence of at least three of the following criteria: waist circumference 

greater than 102 cm in men and 88 cm in women, 150 mg/dL serum triglycerides, high-

density lipoprotein cholesterol less than 40 mg/dL in men and 50 mg/dL in women, blood 

pressure of at least 130/85 mm Hg, or serum glucose of at least 110 mg/dL (6). Using these 

criteria, the Panel estimated the prevalence of metabolic syndrome to be 23.7% with higher 

prevalence reported for higher age groups, women, and ethnicities (6). In addition to 

metabolic syndrome, obesity predisposes individuals to a host of chronic diseases including 

diabetes mellitus, heart disease, respiratory disease, kidney disease, osteoarthritis, and cancer 

(7). Alternatively, benign obesity occurs in a small subset of the population whom, although 

obese, remains metabolically healthy (8). 
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Obesity-associated chronic inflammation and co-morbidities 

Obesity is often characterized by low-grade, chronic inflammation. While acute 

inflammation is a critical step in a host’s immune response to pathogen and injury, chronic 

inflammation is compromising to overall health by several mechanisms. The main outcomes 

of an inflammatory response are increased membrane permeability, infiltration of immune 

cells into tissue, proliferation, and angiogenesis. These functions are accomplished by 

inflammatory mediators that can have deleterious effects when chronically elevated in the 

circulation and tissues. Inflammatory mediators include cytokines, chemokines, adhesion 

molecules, growth factors, angiogenic factors, and reactive oxygen species (ROS) that 

collectively act to promote development of obesity-related co-morbidities.  

Adipose expansion and inflammation 

 Adipose tissue is composed of an integrated network of adipocytes, endothelial cells, 

immune cells, and connective tissue that functions as a dynamic endocrine organ. The cell 

types that make up adipose tissue secrete a myriad of hormones, cytokines, and chemokines 

collectively referred to as adipokines (9,10). The secretion of adipokines is a highly regulated 

process that in a normal state has a net anti-inflammatory effect. However, disruption of the 

normal milieu in obesity results in a shift to a pro-inflammatory adipokine profile. Nearly all 

co-morbidities of obesity can be attributed, at least in part, to chronic inflammation (11,12). 

In obesity, inflammation is initiated by adipocyte expansion and increased cell 

turnover (13,14). Adipocyte turnover, or remodeling, requires recruitment of macrophages to 

aide in necrosis through formation of crown-like structures around the necrotic adipocyte 

(15). Cytokines and chemokines secreted by the activated macrophages along with nucleic 

acids released from necrotic adipocytes stimulate local inflammation in surrounding adipose 
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tissue (16). Adipose inflammation is mediated by pro-inflammatory adipokines, which play 

an integral role in further monocyte and macrophage recruitment (17).  

Saturated free fatty acids and inflammation 

An increase in circulating concentrations of free fatty acids (FFAs) is also observed in 

obesity. The cause of this phenomenon is two-fold: 1) down-regulation of FFA clearance 

from blood and 2) increased FFA release from adipocyte turnover. Saturated fatty acids 

(SFAs) have been causally linked to stimulation of inflammation in adipocytes and 

macrophages. Daniel Hwang’s group was one of the first to demonstrate an inflammatory 

response to SFA in RAW 264.7 macrophages (18). In this study, the SFA lauric acid, 

induced inducible nitric oxide synthase (iNOS) and cylooxygenase 2 (COX2) expression in 

macrophages through activation of toll like receptor 4 (TLR4) and nuclear factor κ B (NF-

B). In adipocytes, SFAs cause an inflammatory response through TLR4 and TLR2 that 

results in activator protein 1 (AP-1), c-Jun N-terminal kinase (JNK), and NF-κB activation 

(19,20,21). Moreover, inhibition of TLR-mediated signaling blunts basal and palmitate-

stimulated pro-inflammatory cytokine secretion and NF-B activation in vitro (22) and 

partially protects against obesity-induced inflammation in vivo (23,24).  

Increased FFA release from adipocytes also results in ectopic lipid deposition in non-

adipocytes referred to as lipotoxicity. Lipotoxicity describes the cytotoxic accumulation of 

lipid in liver, pancreas  cells, skeletal muscle, and cardiomyocytes (25). The cytotoxic lipid 

and ceramide accumulation causes apoptosis of non-adipocytes, thereby contributing to 

insulin resistance and metabolic syndrome (26,27).  
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Role of Adipokines in Obesity-Associated Inflammation 

Pro-inflammatory cytokines  

Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF) are cytokines secreted 

from adipose tissue that act both locally on adipose tissue and systemically on multiple cell 

types to mediate an inflammatory immune response (28,29). Adipose production of IL-6 and 

TNF is elevated in obesity (28,30,31), and decreases with weight loss (32,33). Elevated 

cytokine concentrations contribute to the pathogenesis of many obesity-associated diseases 

including insulin resistance, cardiovascular disease, hepatic inflammation, and many cancers 

(34).  

IL-6. The transcription of IL-6 can be activated by multiple transcription factors 

involved in adipose inflammation including NF-B, AP-1, and CCAAT/Enhancer binding 

protein beta (C/EBP-) (35). Adipose tissue is a major source of IL-6, contributing up to one 

third of circulating IL-6 in healthy adults (29). IL-6 binds its receptor, IL-6R or soluble IL-

6R, in multiple cell types and complexes with gp130 to activate a downstream signaling 

cascade beginning with janus kinase (Jak1) binding and subsequent activation of signal 

transducer and activator of transcription (STAT3) (36). IL-6 is key activator of liver acute 

phase protein synthesis and contributes to angiogenesis and endothelial dysfunction through 

increased vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor 1 

(PAI-1) expression, respectively (37,38,39).  

The importance of IL-6 has been demonstrated in studies investigating the common 

IL-6 -174G>C polymorphism in the promoter region of the human IL-6 gene. The IL-6 

genotype significantly affects circulating IL-6 concentrations and risk of developing insulin 
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resistance and other obesity-associated metabolic complications (40,41). The role of IL-6 has 

been further defined through the use of transgenic animal models. Over-expression of IL-6 in 

muscle of mice led to hyperinsulinemia and impaired glucose uptake despite a reduction in 

adipocyte size and body weight (42). These mice also had increased F4/80 macrophage 

infiltration into the liver. The reduction in adipocyte size and weight is due to increased 

energy expenditure, the opposite of which is also evident in IL-6 deficient mice. IL-6 

deficient mice develop obesity and leptin resistance that are reversed with IL-6 injections 

(43).  

TNF.  In obese individuals compared to lean, adipose production of TNF increases 

2.5 fold (44). Like IL-6, TNF is regulated by NF-B activation, and acts in both an 

autocrine and paracrine manner. TNF signals through two transmembrane receptors, TNFα 

Receptor 1 (TNFR1) and 2 (TNFR2) to activate NF-B, JNK, and mitogen activated protein 

kinases (MAPK) such as extracellular signal-regulated protein kinase (ERK1/2) and p38 as 

reviewed by Cawthorn and Sethi (45). These signaling cascades result in propagation of 

inflammation, and over time, development of insulin resistance through decreased GLUT4 

expression (46). TNF knockout and TNFR knockout mice have reduced, but not diminished 

adiposity and are partially protected from loss of insulin sensitivity compared to mice with 

functional TNF fed a high fat diet (47). TNFα has also been demonstrated to be responsible 

for the obesity-associated increase in the adhesion molecule, E-selectin (48). 

Chemokines 

Chemokines such are macrophage chemotactic protein 1 (MCP-1, also known as 

CCL2) and macrophage inflammatory protein (MIP1, also known as CCL3) are important 
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mediators of obesity-induced inflammation and co-morbidities. The primary functions of 

chemokines are recruitment of immune cells to sites of inflammation, activation of 

inflammatory immune response, and control of cell migration through tissues. Adipose 

expression of MCP-1 and MIP1 is elevated in obesity but is not consistently reflected in 

serum concentrations of these chemokines due to their local action (49,50). In addition to the 

primary role of chemokines in immune function, chemokines also function in regulation of 

glucose homeostasis in adipose tissue under conditions of obesity.  

Of these chemokines, MCP-1 has been most prominently linked to adipose 

inflammation and adipose-linked co-morbidities of obesity. Over-expression of MCP-1 in 

adipose leads to elevated IL-6 and TNF adipose expression and insulin resistance (51). In 

adipocyte cell culture, MCP-1 causes decreased glucose uptake through down-regulation of 

GLUT4 (52). Chronic MCP-1 infusion in mice resulted in development of insulin resistance, 

macrophage infiltration in adipose tissue, and hepatic steatosis (53). Similarly, over-

expression of MCP-1 in adipose tissue of mice using the adipocyte promoter (aP2) resulted in 

macrophage accumulation in adipose tissue, insulin resistance, and increased circulating pro-

inflammatory cytokine and FFA concentrations (51). Conversely, obese mice lacking MCP-1 

receptor (CCR2) have reduced macrophage infiltration into adipose tissue, decreased hepatic 

steatosis, and improved insulin sensitivity (54). 

Adiponectin 

Adiponectin (also known as Acrp30 and AdipoQ) is an anti-inflammatory and 

insulin-sensitizing hormone produced primarily by adipocytes. The 30 kDa protein circulates 

in three forms with distinct biological activity and functions: trimer, hexamer, and high 

molecular weight (HMW). Agonists of the adiponectin promoter, peroxisome proliferator-
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activated receptor γ (PPAR) have been shown to increase adiponectin expression (55) and 

up-regulate the enzyme responsible for adiponectin multimerization, disulfide-bond A 

oxidoreductase-like protein (DsbA-L), and other endoplasmic reticulum proteins involved in 

adiponectin processing and stabilization (56). A feed-forward mechanism has also been 

demonstrated between adiponectin and PPARγ (57). Adiponectin concentrations decrease as 

adipose tissue expands in obesity. This is accomplished by down-regulation of DsbA-L and 

PPARγ (58).  

Adiponectin signals through two 7-transmembrane receptors, adiponectin receptor 1 

(AdipoR1) and 2 (AdipoR2) expressed differentially on multiple cell types (59). Several 

binding proteins have recently been implicated in adiponectin signaling including adaptor 

protein containing PH domain, PTB domain and leucine zipper motif 1 (APPL1), 

endoplasmic reticulum protein 46 (ERp46), receptor for activated protein kinase C1 

(RACK1) and protein kinase CK2β (60). Downstream signaling pathways from AdipoR1 and 

AdipoR2 have not been fully elucidated. However, targeted disruption of AdipoR1 and 

AdipoR2 revealed preferential downstream activation of AMPK and PPAR, respectively 

(61). Additionally, both receptors regulate ERK 1/2, p38, JNK, and STAT3 signaling 

pathways (62,63). The involvement of these signaling pathways in obesity and its co-

morbidities makes adiponectin a promising therapeutic target.  

In a long term mouse obesity study, Bullen et al. reported decreased adiponectin and 

increased adiponectin receptors after prolonged high fat diet feeding in mice (64). The 

elevated inflammation that often accompanies obesity is likely due in part to decreased 

adiponectin production. In adipocytes, adiponectin inhibits lipopolysaccaride (LPS)-induced 

NF-B activation and IL-6 and MCP-1 production (57,65). Adiponectin has been shown to 
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inhibit pro-inflammatory macrophage signaling and promotes activation of M2 macrophages 

to aid in resolution of a pro-inflammatory response, in part through AMPK and PPAR 

signaling (66,67). Obesity-induced decrease in circulating adiponectin concentrations 

(especially HMW) may also promote insulin resistance. Adiponectin participates in 

regulation of glucose uptake by increasing APPL1 and Rab5 binding to AdipoRs, resulting in 

GLUT4 translocation (68,69). Insulin sensitizing effects of adiponectin are mediated by 

AMPK and PPARα activation via AdipoR1 and AdipoR2, respectively (70).   

Pathogenesis and Mechanisms of Obesity-Associated Colon Cancer 

Obesity and colon cancer risk 

The National Program of Cancer Registries reported more than 800,000 cases of 

colon cancer in the United States from the years 1999 to 2004 (71). This report also revealed 

a greater gender disparity (males > females) in people older than 65 yr and a greater race 

disparity (blacks > other races) in people under the age of 65. In the year 2010 alone, the 

American Cancer Society estimated 102,900 new cases of colon cancer and 51,370 colon 

cancer related deaths (72). Obesity is associated both with elevated risk of colorectal cancer 

(73,74) and with colon cancer reoccurrence and mortality (75). Of total cancer deaths in the 

United States, overweight and obesity account for an estimated 14% of cancer deaths in men 

and 20% in women (76).  

Molecular and pathological progression of obesity-linked colon cancer 

The multi-hit model is widely used to describe the process of spontaneous colon 

carcinogenesis. The premise of this model is that of accumulated damage. Multiple “hits” or 

genetic mutations are required to evade clearance by the immune system and allow 

promotion and progression of a tumor cell. The majority of colon cancer is initiated by a 



www.manaraa.com

 15 

somatic or germ-line mutation in the Wnt pathway adenomatous polyposis coli (APC) gene 

or in mismatch repair genes, MLH and MSH (77). Somatic mutations can result as a 

consequence of inflammation-linked oxidative DNA damage. If not detected, these initial 

molecular “hits” progress to hyperplasia and formation of small lesions such as aberrant 

crypt foci (ACF) that are frequently accompanied by depletion of mucin-secreting goblet 

cells.  

The progression from ACF to adenoma is often caused by mutation in a proto-

oncogene such as K-ras, resulting in proliferation of the tumor cells. Up-regulation of proto-

oncogenes and angiogenic factors is stimulated by growth factors and pro-inflammatory 

cytokines common to the obese serum profile. Inflammation in obesity-induced colonic 

epithelium may also be derived from increased intestinal endotoxin transport and interaction 

of saturated FFAs with TLRs (78). Adenomas are highly associated with elevated 

cyclooxygenase 2 (COX-2) due to increased prostaglandin signaling and are characterized by 

dysplasia and often display a vascularized stalk-like structure. The transition from an 

adenoma to a malignant phenotype or carcinoma is often accompanied by additional 

mutations in the tumor suppressor genes p53 and TGF- Receptor. The metastatic potential 

of carcinomas often results in invasion of the submucosa layer and entry into the circulation. 

Colon cancer cells primarily metastasize to the liver via the portal system connecting the 

intestinal tract and liver. In addition to APC, K-ras, and p53 mutations commonly observed 

in human colorectal cancer, alterations in DNA methylation and chromatin regulation have 

recently been identified as a common event in human colon cancer (79). 

Evidence now suggests that location of the tumor within the colon may present with 

different characteristics. Development of tumors in the right vs. left side of the colon is 



www.manaraa.com

 16 

influenced by age, gender, and environmental factors (80,81). Along these lines, histological 

features and tumor subtype are influenced by colon location (proximal vs. distal and right vs. 

left) (82). MiRNA profile has also been shown to vary between proximal, distal, and rectal 

colonic tumors (83). Thus, it is becoming increasingly important to evaluate specific tumor 

subtypes and locations separately when assessing colon carcinogenesis. 

Research animal colon cancer models 

Chemical induction of animal carcinogenesis is aimed to imitate spontaneous gene 

carcinogenesis pathway in humans. The most effective chemical carcinogenesis strategies 

involve both initiation and promotion. In a rodent model of colon cancer, the most chemical 

common initiator is azoxymethane (AOM), a stable metabolite of dimethylhydrazine. AOM 

is a precursor to methylazoxymethanol, a metabolite that initiates PI3K/Akt pathways 

(84,85). Like spontaneous colon carcinogenesis in humans, AOM-induced carcinogenesis 

causes β-catenin accumulation in the nucleus mutation of K-ras. However, AOM-induced 

carcinogenesis typically does not cause p53 or APC mutations as are often observed in 

human cancer (86,87). Irritants such as dextran sodium sulfate (DSS) are often combined 

with AOM to promote carcinogenesis through inflammation and oxidative stress (88). The 

choice of rodent strain is important as strains respond differentially to AOM/DSS treatment 

with Balb/c and C57BL/6 mice developing great number of carcinomas than C3H/HeN and 

DBA/2N strains (89). 

Mechanisms of obesity-linked colorectal carcinogenesis 

Obesity contributes to colorectal tumorigenesis through dysregulation of adipokine, 

cytokine, chemokine, ROS, FFA, and insulin production as summarized in Figure 2.  
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Adipokines and colon cancer 

The adipokines, adiponectin and leptin, are linked to obesity-associated colon cancer 

risk. Several human studies have reported an association between decreased serum 

adiponectin concentrations and increased risk and severity of colorectal cancers (90,91,92). 

Furthermore, differential AdipoR1 and AdipoR2 expression has been detected in human 

tumors of the colon compared to normal colon tissue suggesting a possible role for 

adiponectin signaling in colon tumorigenesis (93,94,95). However, there also exist reports of 

no association between circulating adiponectin and colon cancer, illustrating the multi-

factorial nature of metabolic syndrome and tumor development (96).  

Adiponectin knockout mouse models have produced equally inconsistent results. The 

first in vivo mouse model of adiponectin deficiency and colitis was reported in 2006 by 

Nishihara, et al. (97). In this study, authors reported a protective effect of adiponectin against 

colitis after administration of 0.5% DSS for 15 days. The study was complicated by the use 

of non-littermate knockout and wild-type mice and the high basal circulating concentration of 

Figure 2. Progression of obesity-

associated colon tumorigenesis. The 

hypertrophy of adipose tissue in obesity 

results in dysregulation of adipokine 

secretion and subsequent transition to a 

pro-inflammatory milieu characterized by 

increased production of cytokines, 

chemokines, ROS, and FFAs. This 

environment promotes colon distress and 

tumorigenesis, further contributing to 

chronic inflammation and propagation of 

tissue dysfunction. 
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TNFα in these mice. The following year, Fayad et al. reported that adiponectin deficient mice 

were protected from DSS-induced colitis compared to wild-type littermates (98). The authors 

proposed that adiponectin was inhibiting the activity of epidermal growth factor and heparin 

binding epidermal growth factor through direct binding, thereby inhibiting their protective 

activity in DSS-induced colitis. The first study using AOM-induced tumorigenesis and high 

saturated fat diet-induced obesity in an adiponectin deficient mouse model was reported in 

2008 by Fujisawa et al. (99). In contrast to results reported in the DSS-model, adiponectin 

was protective against obesity associated colon cancer development in the AOM model. This 

is somewhat surprising considering the pro-inflammatory potential of fatty acids. The 

investigation of the role of adiponectin in colon carcinogenesis has been complicated by the 

varied effects of carcinogenic agents, diet, and model. Further research is warranted to 

identify the specific effects of experimental factors and their interaction with adiponectin. 

Mechanistically, adiponectin is a logical molecular target for obesity-linked colon 

cancer prevention due to its role in AMPK and PPAR activation and inhibition of NF-κB 

(100,101,102,103). In support of this, two groups have recently demonstrated that 

adiponectin exerts an AMPK-dependent anti-proliferative effect on human colon cancer cells 

(102,104). Moreover, PPARγ, the transcription factor responsible for induction of 

adiponectin transcript, is considered anti-neoplastic in colon cancer (100). Microarray 

analysis of multiple cancer cell lines treated with full length adiponectin revealed a broad 

mechanism of action with most differentially expressed genes falling within inflammation, 

stress response, and proliferation regulation (105). Interestingly, it was recently shown that 

the effect of adiponectin on cancer cell cancer proliferation is glucose-dependent whereby 

adiponectin supports DLD-1 colon cancer cell survival in low glucose but inhibits 
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proliferation under high glucose conditions (106). In contrast to this, pro-inflammatory 

effects of adiponectin in monocytic cell and colon cancer cells have been reported in vitro 

(107,108). Taken together, adiponectin is an attractive target for obesity-associated colon 

cancer, but further research is needed to completely identify the potential actions of 

adiponectin.  

Leptin has been implicated in colon cancer cell proliferation and invasiveness through 

activation of key pathways including phosphoinositide 3-kinase (PI3K), Src, Wnt, NF-κB, 

and insulin-like growth factor (IGF) pathways (109,110,111). Interestingly, colon cancer 

cells treated with conditioned media from leptin-deficient ob/ob or Wt adipocytes showed 

that leptin mediates the proliferative effect of adipocytes (112,113). Conversely, Ealey et al. 

reported that that leptin does not play a role in early lesion formation using ob/ob and db/db 

mice (114).  

Rather than consider adiponectin and leptin separately as risk factors, the 

leptin:adiponectin ratio has recently emerged as a positive risk factor for colon cancer (115). 

In breast cancer cell lines, an interaction was observed between leptin and adiponectin 

whereby adiponectin treatment caused a decrease in leptin and leptin receptor expression and 

leptin treatment decreases AdipoR1 expression (116). Moreover, when adiponectin and leptin 

are administered to breast cancer cells concurrently, the anti-proliferative effects of 

adiponectin and pro-proliferative effects of leptin are negated. Further interactions have been 

reported between leptin and adiponectin whereby adiponectin rescued the cancer-promoting 

effects of leptin on p53, Bcl2, and NF-κB in prostate, hepatic, and colon cancer cells 

(117,118,119).  
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Inflammation and colon cancer 

Inflammation controls a fine balance between tumor suppression and promotion. An 

acute inflammatory response can promote immune recognition and clearance of tumor cells 

whereas chronic inflammation contributes to genomic instability, angiogenesis, and 

proliferation of tumor cells. A strong causative association between inflammation and colon 

cancer has been established in inflammatory diseases such as Crohn’s disease and colitis 

(120,121). This is demonstrated by data showing NSAIDs (non-steroidal anti-inflammatory 

drugs) such as aspirin effectively prevent colorectal adenoma development (122,123).  

Expression of the pro-inflammatory cytokines IL-6 and TNF is up-regulated in 

adipose tissue in obesity. In addition to autocrine and paracrine effects on adipose tissue, 

adipose-derived IL-6 and TNF can signal in an endocrine manner to activate NF-B in 

tumor cells. In turn, the tumor cells increase production of cytokines, chemokines, and COX2 

leading to a feed-forward propagation of tumor cell proliferation and growth (124,125). This 

association was demonstrated in obese subjects who underwent diet-induced weight loss 

(126). Weight loss of on average 10% of initial body weight resulted in decreased colonic 

expression of MCP-1, TNFα, and IL-1β, a 42% reduction in macrophage number, and 

downregulation of STAT3 and NF-κB pathways. IL-6 itself drives colon cell proliferation 

(127) and contributes to damage of colonic tissue through increased expression of MMP, 

ICAM, and VCAM and increased immune cell infiltration (35). The importance of TNFα in 

colon cancer has been demonstrated through targeted disruption of TNFα signaling. Anti-

TNFα antibody blocked NF-κB activation in epithelial cells (128). In line with this, mice 

lacking TNF Receptor p55 were protected from AOM/DSS-induced immune cell infiltration, 

mucosal damage, and tumorigenesis compared to wild-type mice (129).  
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The effects of pro-inflammatory cytokines on tumorigenesis are mediated in part 

through TLR4 and NF-κB activation. In obesity, TLR4 expression is up-regulated by 

increased circulating and colonic endotoxin as well as adipose- and diet-derived SFAs 

(78,130). TLR4 expression is associated with adenocarcinoma and increased risk of disease 

progression (131,132). In support of this, mice transgenic for constitutive activation of TLR4 

were more susceptible to AOM/DSS-induced carcinogenesis (132). Moreover, amelioration 

of TLR4 signaling in DSS models of colitis reduced disease severity, decreased MAPK p38, 

c-Jun, IL-6, and TNFα mucosal expression, and inhibited macrophage and dendritic cell 

infiltration (133,134). However, TLR4 blockage also inhibited repair of DSS-induced 

mucosal tissue damage (134), illustrating the importance of inflammation-mediated tissue 

repair to colonic integrity. The duel roles of TLR4 are explained by transcription of growth 

factors, cytokines, and chemokines by NF-κB that both promote tumorigenesis and tissue 

repair.  

Oxidative stress and colon cancer 

Up-regulation of ROS production occurs upon activation of NF-κB in colonic 

epithelium, immune cells, and adipose tissue in obesity (135,136,137). When produced in 

large quantities, ROS overwhelm the oxidant:anti-oxidant balance, resulting in oxidative 

damage to DNA (138). The persistence of ROS-induced DNA damage leads to genomic 

instability and ultimately formation of a cancer cell (139). This is supported by multiple 

human studies showing a strong association between oxidative stress and colon cancer 

(140,141,142). ROS also activates molecular pathways that play a role in carcinogenesis such 

as the MAPKs, p38 and JNK (143), and cytokine production by NF-κB (144).  
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Insulin dysregulation and colon cancer 

High insulin and glucose are associated with increased risk for colorectal adenomas 

(145,146). Moreover, diabetes is an independent risk factor for several cancers types, 

including colon, with risk increasing across BMI categories (146,147,148). These 

associations support the hypothesis that obesity-induced hyperinsulinemia and increased 

active IGF-1 promote colon cancer (149). Hyperinsulinemia promotes colon cancer cell 

proliferation through activation of the mammalian target of rapamycin (mTOR)/c-Myc 

pathway and nuclear accumulation of β-catenin (150). Chronic injections of insulin increased 

ACF multiplicity and tumors in rats after AOM injections (151,152). Blockage of 

downstream insulin signaling through insulin receptor substrate 1 (IRS-1) inhibition results 

in attenuation of colon cancer cell proliferation (153). Moreover, mice with muscle-specific 

insulin receptor knockout develop fewer AOM-induced ACF than mice with functional 

insulin receptor (154). 

IGF-1 Receptor (IGF-1R) is over-expressed in human adenocarcinoma (155), and 

expression of IGF-1R is positively associated with severity and metastasis of colorectal 

cancer (156). IGF-1 mediates proliferation and apoptosis signals for many cell types, and as 

such has been highly implicated in promotion of tumorigenesis (157). The RNAi knockdown 

of IGF-1R in vitro causes chemosensitization and reduced proliferation of human colon 

cancer cells (158). Liver-specific IGF-1 deficient mice have reduced circulating IGF-1 

concentrations and show attenuation of AOM-induced colorectal proliferation and 

tumorigenesis (159). Furthermore, growth of human colorectal tumors injected 

intrahepatically (a common metastasis site) in mice was inhibited by IGF-1R antibody (160). 
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The link between insulin dysregulation and colon cancer is further demonstrated by 

diabetes drugs that have been shown to attenuate colon tumorigenesis. Pioglitazone, a PPAR 

agonist, reduces ACF multiplicity in humans (161). Moreover, Metformin reduces ACF 

development in AOM mouse model through AMP-activated protein kinase (AMPK)-

dependent decrease of IGF-1 (162,163). In a retrospective cohort analysis of human diabetic 

subjects on various diabetes treatments, those patients receiving insulin therapy had an 

elevated risk of colorectal cancer whereas those patients taking Metformin had the lowest 

risk of colorectal cancer (164).  

Dietary fat and colon cancer  

There is a paucity of human data relating dietary fat and colon cancer risk, and the 

currently published data is inconsistent. Older epidemiological studies report a positive 

association between dietary fat and colon cancer (165,166,167,168,169). Conversely, more 

recent prospective and retrospective human studies have reported little or no association 

between saturated fat and colon cancer (170,171,172,173). There is yet another set of 

literature that argues general caloric intake rather than saturated fat contributes to colon 

cancer risk (165,174,175). Interestingly, dietary fat restriction increased incidence of CRC 

reoccurrence in patients over a 4 year period (176). These controversial results are the 

consequence of varied statistical methods for inclusion of genetic mutations, food 

composition, degree of cancer severity, and collection of subject diet information.  

In contrast to human data, a causal association between dietary fat type or amount and 

development of colon cancer has been reported in several rodent carcinogenesis models. One 

of the first reports of the role of fat quantity and type in colon carcinogenesis was performed 

by Reddy et al. in 1976 (177). In this study, diets of 20% corn oil or 20% lard increased 
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dimethylhydrazine-induced colon tumor incidence compared to 5% fat diets, but there were 

no differences observed between fat type and incidence. In a follow-up study, Reddy et al. 

demonstrated that type of fat could modify colon cancer development where replacement of 

75% of a 23.5% corn oil diet with fish oil resulted in a significant reduction in development 

of AOM-induced tumors (178). Rao and colleagues further investigated the effects of high 

saturated fat, high omega-3 fat, or low fat corn oil diets in an AOM rat model (179). In this 

study, rats fed the high saturated fat diet developed greater colon tumor multiplicity, 

decreased colonic apoptosis, and higher COX-2 activity than other diets. A similar role for 

high saturated fat has been reported in benzo(a)pyrene and tribromomethane models of 

carcinogenesis and hepatic metastasis (180,181,182). Together, these results suggest that 

both amount and type of fat are important in regulation of colon tumorigenesis. 

Recently, a more mechanistic relationship has been built between dietary fat and 

colon cancer. Endo et al. showed that a high fat but not low fat diet promoted ACF formation 

and colon cancer cell proliferation through the JNK pathway in an AOM mouse model (183). 

In support of this, circulating triacylglycerols are positively associated with colonic oxidative 

stress and lesion formation (184). The pro-inflammatory effects of saturated fats on adipose 

tissue discussed above provide support for the data that suggests saturated fats potentiate 

colon carcinogenesis. It is possible that saturated fat elicits a toll like receptor-mediated 

immune response in the colon as in adipose tissue. It is also plausible that saturated fat-

induced adipokines act on the colon to propagate inflammation and carcinogenesis. In 

addition to induction of inflammation, a potential mechanism by which high fat diets 

promote colon carcinogenesis is through increased bile acid synthesis and bile acid-induced 

DNA oxidative damage. Bile acids have been shown to be carcinogenic (185) and to be 
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increased under high fat diet conditions (186,187). However, animal studies aimed at this 

mechanism have not yet been reported. Further investigation is warranted in this field to 

identify the effects of dietary fat and obesity on cancer risk.  

Resveratrol Functional Properties and Bioavailability 

Functional properties 

Resveratrol (trans-3,5,4’ trihydroxystilbene, RSV) is a polyphenol found in grapes 

and red wine among other plant products. RSV is synthesized in plant species in response to 

stress by the enzyme RSV synthase (trihydroxystilbene synthase) (188). The polyphenolic 

and lipophilic structure of RSV account for its antioxidant properties as well as its uptake by 

tissues. RSV primarily exists in foods as its glucoside, trans-piceid (189). However, RSV 

aglycone is the form most widely studied, commercially available, and most commonly used 

in supplements.  

Absorption, metabolism, and bioavailability 

The bioavailability of RSV was investigated by Walle, et al. through the tracking of 

25 mg 
14

C-RSV administered orally to six human subjects (190). Walle, et al. reported high 

absorption (70%) with 2 M peak plasma metabolite and RSV concentrations occurring at 1 

hr. A second peak of 1.3 M occurred at 6 hr. after intake. Unfortunately, amounts of 

unchanged 
14

C-RSV were not well detected (<5 ng/ml) in the serum. The primary metabolite 

of RSV detected in the serum was the sulfate-conjugate (although the glucuronide form was 

also detected). The fate of this metabolite is currently unknown regarding tissue uptake and 

metabolism. RSV is ultimately eliminated in the urine (191) and is not reportedly toxic (192). 

A similar study was performed following 
14

C-RSV after oral administration in Balb/c mice 

(193). In consensus with the human study, whole blood circulation concentrations were 1.5 
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M. However, the use of mice allowed researchers to evaluate tissue concentrations of RSV 

revealing high accumulation in the liver and kidney (25 M and 50 M, respectively). Taken 

together, these studies provide extremely valuable information regarding the metabolic 

processing of RSV and indicate that RSV may indeed be a realistic therapeutic tool. 

There are several factors that may affect circulating RSV detection. In light of a 

recent report showing RSV conjugates are detected better in whole blood than serum (194), 

RSV may circulate at higher concentrations than previous studies have reported. 

Additionally, the cis isomer of resveratrol is rarely measured specifically, but exists in the 

circulation. However, the biological activity of cis-RSV is largely unknown due to the lack of 

commercial availability. Recent evidence suggests that RSV bioavailability may also be 

affected by circadian rhythm and that highest bioavailability occurs in the morning (195).  

RSV absorption and metabolism has also been investigated in vitro through the use of 

the Caco-2 intestinal cell culture model (196,197). RSV aglycone is better absorbed than the 

glucoside trans-piceid due to its lipophilic properties allowing for passive diffusion of RSV 

while trans-piceid is transported by SGLT-1 (197). It has been well established that both 

RSV and piceid are metabolized upon uptake into the enterocyte. Piceid may be hydrolyzed 

to release RSV by the enzymes -glucosidase in the cytosol or the membrane-bound lactase 

phlorizin hydrolase (198,199). RSV is primarily modified by sulfonation and 

glucuronidation. As demonstrated in Caco-2 cells, these modifications may render RSV less 

bioactive once absorbed (196). In addition to RSV metabolites, RSV is also found circulating 

bound to serum albumin or hemoglobin, resulting in a longer half-life (200). 
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Resveratrol and Obesity 

The promising anti-obesity effects of RSV were introduced in 2006 when Sinclair and 

colleagues showed RSV supplementation (0.04%) increased survivability in high calorie-fed 

mice (201). This effect was accompanied by increased insulin sensitivity, decreased hepatic 

lipid accumulation, increased mitochondrial function, and improved overall metabolic 

profile. In response to this study, a number of molecular targets have been identified linking 

RSV with anti-obesity effects.  

Primary molecular targets 

SIRT1. It is well established that RSV is a SIRT1 activator. SIRT1 is an NAD
+
-

dependent deacetylase of histones, transcription factors, and other non-histone proteins 

located in the nucleus of several cell types including white adipose, skeletal muscle, and liver 

(202). Borra, et al. proposed that RSV directly binds SIRT1 thereby inducing a 

conformational change that enables interaction between SIRT1 and its substrate group (203). 

SIRT1 activates a wide range of genes including PPAR, PPARγ CoActivator 1α (PGC-1α), 

and FoxO1. These pathways are critically involved in adipocyte differentiation, metabolism, 

and regulation of ROS (204). In general, the effects of resveratrol are not negated when 

SIRT1 is knocked out, but rather diminished suggesting an additional route of action of 

resveratrol (205).  

AMPK. In addition to SIRT1, AMPK has recently been recognized as a primary 

target of RSV. The mechanism by which RSV activates AMPK is currently unknown. It has 

been proposed that AMPK activation is linked to SIRT1 activation (206). This is supported 

by evidence that SIRT1 regulates LKB1, the upstream AMPK activating kinase (207). 

However, acute RSV-induced LKB1 activation of AMPK has been demonstrated 
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independent of SIRT1 (208). Moreover, it is now recognized that PGC-1α activation requires 

both SIRT1 deacetylation and AMPK phosphorylation (209). The individual effects of 

AMPK activation are on fatty acid oxidation through phosphorylation of acetyl CoA 

carboxylase (ACC) and stimulation of glucose transport (210,211).  

Anti-obesity physiological effects 

Adipokines and inflammation 

The anti-inflammatory properties of RSV are mediated in part through adipokine 

regulation. Numerous studies have reported increased adiponectin production in response to 

RSV treatment both in vitro (212,213,214) and in vivo (215). In an intervention study of 

participants with elevated serum CRP, subjects given a supplement containing RSV among 

other antioxidants had a 7% increase adiponectin concentrations and a decrease in the overall 

inflammation (216). Until recently, the mechanism by which RSV increased adiponectin 

concentrations was unknown because expression and stability of the adiponectin transcription 

factor, PPARγ, is reportedly down-regulated by RSV in adipocytes (217,218). Recently, 

Wang, et al. reported one potential mechanism of adiponectin regulation by RSV in which 

RSV activates DsbA-L, the enzyme responsible for multimerization of adiponectin to form 

its HMW structure (214). They further described the activation of DsbA-L as Sirt1-

independent, and AMPK- and Foxo1-dependent pathway both in vivo and in vitro.  

Decreased pro-inflammatory cytokine production in adipocytes and macrophages is 

another mechanism whereby RSV ameliorates obesity-associated inflammation. In 3T3-L1 

adipocytes, RSV suppressed macrophage conditioned media-induced IL-6 and TNF 

secretion through NF-κB p65 inhibition (213). RSV also suppressed MCP-1, COX2, IL-6, 

and IL-1β expression in TNFα-stimulated adipocytes through NF-κB inhibition (219,220). 
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Using human macrophages and adipocytes, McIntosh’s group recently demonstrated a role 

for MAPKs (JNK and p38) and AP-1 in addition to NF-κB in the anti-inflammatory effects 

of a grape powder extract containing RSV (221). A similar study was conducted using 

human monocytes wherein RSV inhibited LPS- and TNFα-induced MAPK, NF-κB, and AP-

1 pathways in monocytes and lymphatic cells (222). The inhibition of pro-inflammatory 

cytokine and chemokine secretion by RSV in adipose tissue and adipocytes has been shown 

to be SIRT1-dependent (205,223).   

RSV has also been shown to alleviate inflammation-induced oxidative stress. In 

TNFα-treated adipocytes, RSV decreased ROS production and increased glutathione 

peroxidase, superoxide dismutase, and glutathione S-transferase activity (224). Moreover, 

RSV functions to prevent hepatic steatosis (201,225) and improve endothelial function (226) 

through attenuation of ROS production. 

Energy balance and metabolism 

RSV has been demonstrated to improve the obese metabolic profile through 

increasing fatty acid oxidation, glucose uptake, and insulin sensitivity. Growth of both pre-

adipocytes (205) and mature adipocytes (217) was down-regulated by RSV through 

increased mitochondrial activity and decreased expression of genes involved in adipogenesis 

and fatty acid synthesis. Similarly, obese Zucker diabetic rats treated with long-term daily 

RSV supplementation (10mg/kg body weight) had increased liver AMPK phosphorylation 

(Thr172) and ACC phosphorylation, resulting in increased β-oxidation (215). RSV improved 

insulin-stimulated glucose uptake in C2C12 myotubes (210) and adipocytes (205,213) 

through inhibition of IRS-1 serine phosphorylation and increase in tyrosine phosphorylation. 
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Importantly, RSV has also been shown to activate hepatic PGC-1α thereby allowing for 

greater thermogenic potential (201,227). 

Resveratrol and Colon Cancer 

RSV is a promising chemotherapeutic agent due to its ability to attenuate initiation 

and progression of carcinogen-induced colon cancer (228,229,230,231). The molecular 

targets of RSV, SIRT1 and AMPK, function to attenuate colon carcinogenesis by 

mechanisms similar to its anti-obesity effects: inflammation, oxidative stress, and 

proliferation.  

Inflammation  and oxidative stress 

The role of RSV in colitis and inflammation-associated tumorigenesis has been best 

studied using the irritant, DSS. The addition of 0.03% RSV to the diet of mice resulted in a 

dose-dependent decrease in DSS-induced colitis and a significant decrease in AOM/DSS-

induced tumorigenesis (232). Singh and colleagues showed that RSV (100 mg/ kg body 

weight) prevented DSS-induced colitis through an increase in SIRT1 and decrease in NF-B 

that was accompanied by a reduction of serum IL-6, IL-1, IFN- and decreased macrophage 

number in lamina propria (233). In similar studies of DSS-induced colitis, RSV protected the 

colonic mucosa through attenuation of iNOS expression and NF-B activity (234,235). It is 

noteworthy for the interpretation of studies combining RSV and DSS treatments that the 

impact of RSV on DSS metabolism is currently unknown. The role of RSV in oxidative 

stress was further demonstrated by RSV-induced activation of p53 in colon cancer cells in 

response to NO production (236). 
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Cancer cell proliferation 

 In human patients given 0.5 or 1 g RSV prior to undergoing surgical resection of 

malignant colon tumors, colon cell proliferation was reduced by 5% compared to patients 

that did not receive RSV (237). Interestingly, tissue accumulation of RSV was higher on the 

right side of the colon compared to the left in these patients. It has been shown that RSV 

inhibits HT29 and SW480 colon cancer cell proliferation in part through suppression of IGF-

1R protein levels in vitro (238). In support of this, daily intake of RSV has been shown to 

also markedly decrease circulating IGF-1 and IGF binding protein-3 concentrations in mice 

(201) and humans (239). High dose RSV (100-150 M) has been shown induce apoptosis 

through activation of p53 in vitro (240) and induction of endoplasmic reticulum stress (241). 

However, this high circulating concentration of RSV is not attainable in vivo from dietary 

RSV, and as such is not a likely physiological mechanism of dietary RSV. 

Summary 

The prevalence of obesity and co-morbidities continues to rise in developed countries. 

Hypertrophic adipose tissue contributes to an obese inflammatory profile through down-

regulation of adiponectin and up-regulation of leptin, IL-6, and MCP-1. The resulting 

increase in NF-κB activation and MAPK signaling promote development of colorectal cancer 

through increased proliferation, proto-oncogene expression, and oxidative stress. 

Additionally, metabolic dysregulation associated with adiposity contributes to tumorigenesis 

through stimulation of proliferation and inflammation by hyperinsulinemia and SFAs, 

respectively. While adipose-derived cytokines and hormones have been suggested to play a 

role in the pathogenesis of colon cancer, the mechanisms have not been elucidated. The best-

studied adipokine in colorectal tumorigenesis is adiponectin. However, the literature is 



www.manaraa.com

 32 

inconsistent regarding the role of adiponectin in colon tumorigenesis with both protective and 

tumorigenic roles reported. Furthermore, the interpretation of the current literature is 

complicated by the varied cancer models and diets used. The characterization of adiponectin 

function in development of obesity-associated colorectal cancer is important for the 

development of therapeutic targets aimed at disease prevention. 

The polyphenol, RSV, has reported therapeutic potential for prevention of both colon 

cancer and obesity-related metabolic perturbations. In obesity models, RSV has been shown 

to attenuate inflammation, improve insulin sensitivity, increase fatty acid oxidation, and 

alleviate oxidative stress. Moreover, RSV mediates the adipokine profile through up-

regulation of adiponectin expression and down-regulation of pro-inflammatory cytokines and 

chemokines. RSV has also been shown to successfully inhibit multistage colon 

carcinogenesis and proliferation of colon cancer cells. The preventative role of RSV in 

obesity and colon cancer makes it a promising dietary strategy for prevention of obesity-

associated colon cancer.  However, the function of RSV in colon carcinogenesis has not been 

reported in the context of obesity. Moreover, the interaction between RSV and adipokines in 

colon cancer is not known. Sirt1 and AMPK have been identified as the primary targets of 

RSV. However, the specific roles of Sirt1 and AMPK in the anti-inflammatory function of 

RSV are unknown in the context of obesity-associated colon cancer. The elucidation of the 

mechanistic action of RSV in cell types involved in obesity-associated colon cancer is 

important for potential therapeutic target detection. Predicated on this literature base, we 

hypothesized that adiponectin regulates colon tumorigenesis through inhibition of 

inflammation in colonic epithelial cells. We further hypothesized that dietary RSV attenuates 
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colon tumorigenesis in part through increased adiponectin concentrations and subsequent 

disruption of NF-κB and AP-1 transcription factor activity. 
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CHAPTER 3. EARLY LESION FORMATION IN COLORECTAL 

CARCINOGENESIS IS ASSOCIATED WITH ADIPONECTIN STATUS WHEREAS 

NEOPLASTIC LESIONS ARE ASSOCIATED WITH DIET AND SEX IN C57BL/6J 

MICE 
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Abstract 

Adiponectin is an anti-inflammatory and insulin-sensitizing hormone that is 

decreased in obesity. Although controversial, it has been suggested that decreased 

adiponectin contributes to colorectal cancer risk in obesity. To further investigate the role of 

adiponectin in obesity-linked colorectal carcinogenesis, we utilized male and female 

adiponectin knockout (KO) and wildtype (Wt) C57BL/6J mice. Tumorigenesis was induced 

in all mice with the combined treatment of azoxymethane (AOM) and dextran sodium sulfate 

(DSS). Following AOM/DSS treatment, mice were fed a low fat, control (LFC) or high fat, 

lard (HFL) diet for 7½ weeks. We report that KO mice developed fewer total lesions than Wt 

mice, males developed fewer lesions than females, and mice fed HFL diet developed fewer 

lesions than those fed the LFC diet. Early lesion multiplicity was influenced by genotype, 

while advanced lesion development was influenced by sex and diet. Moreover, lesion types 

were differentially correlated with serum adipokines and colon gene expression of 

adiponectin receptors, insulin receptor and toll like receptor 4. These data suggest that in the 

AOM/DSS model of carcinogenesis, adiponectin functions to promote early lesion 

development whereas sex and diet are important regulators of advanced lesion development 

through pathways involved in inflammation and insulin signaling. 
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Introduction 

Adiponectin, an abundant protein secreted primarily from adipose tissue, signals 

through AdipoR1 and AdipoR2, which are expressed on many cell types (1,2,3). This 

adipokine functions to increase insulin sensitivity and reduce inflammation in adipocytes and 

other cells (4,5). As adipose tissue expands in high fat diet-induced obesity, the adipokine 

profile promotes systemic inflammation and insulin resistance through depression of 

adiponectin expression and concurrent increases in expression of pro-inflammatory 

cytokines, including IL-6, lipocalin 2 (Lcn2) and TNFα (6,7). The pro-inflammatory 

environment resulting from a high saturated fat diet increases risk for colon carcinogenesis 

(8).  

Although low serum adiponectin concentration was recently identified as a potential 

factor in development of several malignancies, including colorectal cancer (9,10,11), this 

association is controversial and is not supported in all populations reported (12). In contrast 

with its anti-inflammatory role in adipocytes, a pro-inflammatory role has been reported for 

adiponectin in colonic epithelial cells in vitro. Administration of globular and full length 

adiponectin to colonic epithelial cells resulted in stimulation of pro-inflammatory cytokine 

secretion and proliferation (13). Moreover, adiponectin receptor expression was elevated in 

colons of patients with colorectal malignancies compared to patients with normal colons, and 

in vitro, adiponectin receptors were activated by adiponectin in colon adenocarcinoma cell 

lines, suggesting that adiponectin is recognized by the colon and therefore may play a role in 

colorectal cancer development (14). In addition to adiponectin, several factors related to 

adipose tissue expansion have been correlated to risk of colorectal cancer including 

hyperinsulinemia, IGF-1 resistance, leptin resistance, and dyslipidemia (15,16,17,18,19).  
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The role of adiponectin in colonic inflammation and colorectal cancer pathogenesis 

has recently been studied in vivo through use of adiponectin- and adiponectin receptor-

deficient mice. Results of these studies are conflicting and have proposed both protective and 

promoting roles for adiponectin in dextran sodium sulfate (DSS)- or azoxymethane (AOM)-

induced inflammation and colorectal carcinogenesis (20,21,22). In addition to DSS and AOM 

treatment differences, these discrepancies may be due to treatment duration, lesion endpoint 

analysis, and high fat vs. low fat diets differences between studies. To further investigate the 

association between these parameters and adiponectin in colorectal carcinogenesis, we used 

our adiponectin deficient mouse model coupled with combined treatment of AOM and DSS-

induced carcinogenesis to which the C57BL/6 strain is highly sensitive (23). This animal 

model was designed to elucidate the roles of chronic adipose inflammation characteristic of 

high saturated fat diet-induced obesity and sex under conditions of adiponectin deficiency in 

carcinogenesis and neoplastic progression. 

Materials and Methods 

Animals. Adiponectin-deficient mice were developed by Xenogen Biosciences 

Corporation (Cranbury, NJ) using homologous recombination in mouse embryonic stem cells 

and subsequent blastocyst injection of the appropriate targeted embryonic stem cells.  The 

mouse chromosome 16 sequence (n.t.# 21,898,000~21,978,000) was retrieved from the 

Ensembl database Build 32 and used as reference. BAC clone RP23-364K13 was used for 

generating homologous arms and southern probes by PCR or RED cloning/gap-repair 

method. The 5’ homologous arm (5.3 kb) and the 3’ homologous arm (4.8 kb) were 

generated by RED cloning/gap repair. They were cloned in FtNwCD vector and confirmed 

by restriction digestion and end-sequencing. The final vector was obtained by standard 
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molecular cloning method. Aside from homologous arms, the final vector also contains FRT 

flanked Neo expression cassette (for positive selection of the embryonic stem cells), and a 

DTA expression cassette (for negative selection of the embryonic stem cells). The final 

vector was confirmed by both restriction digestion and end sequencing analysis. NotI was 

used for linearizing the final vector for electroporation. The 5’ and 3’ external probes were 

generated by PCR reaction using proofreading LA Taq DNA polymerase (Takara Bio, 

Madison, WI), and were tested by genomic Southern analysis for screening of the embryonic 

stem cells. The probes were cloned in the pCR2.1 backbone and confirmed by sequencing. 

Pups were screened via PCR specific to the Neo gene insertion and four male heterozygote 

founder mice were shipped to our laboratory at Iowa State University.  Heterozygotes were 

bred to wild type females, and offspring were genotyped. Heterozygotes were then bred to 

heterozygotes to establish the colony. 

Forty adiponectin knockout (KO) and forty wild type (Wt) mice of both sexes were 

generated for this study. Genotypes were determined by PCR of genomic DNA extracted 

from tail clips using the following primers: Forward1 

CCAACTAAGACACTGATGAAGACCTCCTG, Forward 2 

CTTTACGGTATCGCCGCTC, and Reverse CTGGGCAGGATTAAGAGGAA. Mice were 

housed individually in a climate controlled facility with 12:12 hr light:dark cycle. All 

experimental protocols for animal care and use were approved by the Institutional Animal 

Care and Use Committee at Iowa State University, Ames, Iowa.  

Study Design. A complete randomized block study design was used with blocks 

structured on the basis of age, genotype, and sex. At 6 weeks of age ± one week, each block 

of mice was moved to individual housing and acclimated on AIN-93M diet (Harlan Teklad, 
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Madison, WI) for one week. At 7 weeks of age, all mice were administered a single 

subcutaneous injection of 10 mg/kg body weight AOM (Sigma-Aldrich, St. Louis, MO). 

Fresh DSS (MW 36,000-50,000, MP Biomedicals, Solon, OH) was provided daily at 1% 

(w/v) in the tap water for 4 weeks following AOM injection to facilitate tumorigenesis. Mice 

were randomly assigned to high fat, lard (HFL) and low fat, control (LFC) treatment diets, 

with 10 mice/treatment combination, which began 3 days after DSS treatment ended. The 

diet compositions were based on the AIN-93M formulation (Harlan Teklad, Madison, WI) as 

previously described with the following modification (24) the high fat diet was composed of 

36% lard by weight as the fat source with protein balanced on a caloric basis (Table 1). The 

treatment diets were fed ad libitum for 7 ½ weeks at which point the study was terminated 

due to significant weight loss. Water (with DSS) and LFC and HFL dietary intake were 

measured daily throughout respective treatment periods. DSS load (mg DSS consumed per g 

body weight) was calculated for use as a covariate in statistical analysis of colon lesions and 

inflammatory and insulin resistance endpoints. 

Sample Collection. Mice were fasted for 6-8 hours, sacrificed by CO2 asphyxiation 

and terminal blood was collected by cardiac puncture for blood glucose and serum analysis. 

Colon and gonadal fat pad samples were removed and weighed. Tissue sections 

(approximately 2 cm. in length) were taken from the distal end of the colon, flushed with 

PBS, and preserved in 10% buffered formalin for histological analysis of lesions. Remaining 

distal and proximal colon sections and fat pads were flash frozen in liquid nitrogen and 

stored at -80 °C for RNA extraction.  

Lesion Histology. To estimate the number of pre-neoplastic and neoplastic colonic 

lesions among mice in different diet and treatment groups, aberrant crypt foci (ACF), mucin 
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depleted foci, adenomas, intramucosal carcinomas, and invasive carcinomas were counted in 

histologic sections of colon and the number of each lesion type per mm colon determined. 

Formalin-fixed colon samples were processed routinely for histopathology, embedded to 

allow perpendicular sectioning, sectioned at 5 microns, and sections were stained with 

hematoxylin and eosin. The total length of each sample was determined using morphometric 

analysis (Image J software, NIH) of digital photomicrographs of histologic sections of colon. 

Briefly, 20X digital images of each tissue section were collected using a Nikon Eclipse 55i 

microscope and DSFi-1 digital camera system.  Images were opened in the Image J software, 

the length of the mucosa was recorded using a free-hand line and the length analyzed using 

the “Measure” function. The sum of each image for the tissue sample was converted to mm 

by comparison with a micrometer standard.  In addition, each tissue section was evaluated 

histologically by a veterinary pathologist blinded to mouse groups and treatments. Aberrant 

crypt foci (ACF), mucin depleted foci, adenomas, intramucosal carcinomas, and invasive 

carcinomas were determined for each sample using standard histologic criteria (25,26). 

Bifurcated crypts were included as ACF. Mucin depleted foci were identified as crypts absent 

of goblet cell differentiation. The data is presented as number of ACF, early lesions (ACF 

plus mucin depleted foci), adenomas, intramucosal carcinomas plus invasive carcinomas  

(IMC+IC) and total lesions per mm colon. 

Serum Analysis. Blood glucose was measured using a commercially available 

glucometer (LifeScan, Milpitas, CA). ELISA or EIA was used to measure the following 

serum parameters: total adiponectin (R&D Biosystems, Minneapolis, MN), IL-6 (R&D 

Biosystems), leptin (R&D Biosystems) and insulin (Alpco Diagnostics, Salem, NH). Serum 

adiponectin was measured in all mice for genotype verification. However, only serum 
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adiponectin concentrations from Wt mice are reported here as adiponectin concentrations 

were not detectable in serum from KO mice.  

Quantitative Real Time PCR. Frozen adipose and colon tissue was ground in liquid 

nitrogen and RNA was isolated using acid-phenol reagent (TRIzol, Invitrogen, Carlsbad, 

CA). DNA contamination was removed using DNase-Free (Ambion, Austin, TX) and RNA 

was visualized on a diagnostic agarose gel to confirm purity. cDNA was synthesized using 

iScript (Bio-Rad, Hercules, CA). Standard curves were created for all primer pairs by cloning 

amplified cDNA into pGemT vector (Promega, Madison, WI) and sequenced to confirm the 

gene target. Primers used are listed in Table 2. Concentrations of RNA in samples were 

quantified on iCycler (Bio-Rad, Hercules, CA) using IQ™ SYBR Green Super Mix kit (Bio-

Rad, Hercules, CA). Thermal cycling conditions were 95°C for 3 min followed by 40 cycles 

of 95°C for 15 seconds, 60°C for 30 seconds, and 72°C for 30 seconds. Gene expression in 

each tissue was normalized to a housekeeper gene (β-Actin or GAPDH) and expressed as log 

starting quantity. 

Statistical Analysis. Data were tested for normality and analyzed using general linear 

models analysis in SAS (Version 9.2; SAS Institute, Cary, NC) with block, genotype, diet, 

and sex considered fixed effects. Total DSS load and body weight were used as covariates for 

relevant analyses. Mean separation was performed with differences considered significant at 

P < 0.05 and tendency at P < 0.10. Correlation procedure was used to identify significant 

correlations between lesion types and serum and gene expression parameters. Data are 

presented as least square means ± s.e.m.  
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Results 

Physiological response to obesity is genotype- and sex- dependent. Mice fed the HFL 

diet gained significantly more weight and had greater adipose mass than mice fed the LFC 

diet (Table 3). Interestingly, KO mice gained significantly less than Wt mice throughout the 

dietary treatment period in both LFC and HFL diet groups. However, no genotype 

differences in gonadal fat pad weight were observed when normalized to body weight (Table 

3), nor were caloric intake (P=0.3951), initial body weight (P=0.4548) or final body weight 

(P=0.2083) different between genotypes. Although there were no differences in food intake 

between genotypes, LFC mice consumed more than HFL (P<0.0001) and females consumed 

more than males (P=0.0077) on a gram per day basis (data not shown). Because animals were 

on diet only 7 ½ weeks, serum adiponectin concentrations were not depressed in high fat 

diet-fed mice. However, there were differences in circulating glucose and insulin 

concentrations between genotypes, suggesting a role for adiponectin in insulin and glucose 

regulation (Table 3). Both serum glucose and insulin were lower in KO mice than Wt mice, 

and although the glucose:insulin ratio was not statistically different in Wt compared to KO 

and in males compared to females, there was a tendency for a positive correlation (r=0.3422) 

between serum adiponectin and glucose:insulin ratio (P=0.0595) in Wt mice. It is likely that 

after 7 ½ weeks of high fat diet feeding, the mice were at an early stage of insulin resistance 

and were beginning to compensate for loss of insulin sensitivity. Serum leptin concentrations 

were higher in the HFL diet than LFC and a diet*sex interaction was observed where males 

had higher leptin concentrations than females only in mice fed the HFL diet. No significant 

differences in serum IL-6 concentrations were identified between mice due to low detection 

levels (data not shown).  
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Incidence of AOM/DSS- induced colorectal lesions. At the time of sacrifice, both 

early and advanced lesions were detected in colons. Total lesion number per mm colon was 

significantly higher in Wt than KO mice, and there was a tendency for increased numbers of 

total lesions in females compared to males and in mice fed LFC diet compared to HFL 

(Figure 3).  Interestingly, when analyzed separately, development of early and advanced 

lesion types was affected differentially by genotype, diet, and sex effects. ACF and early 

lesions were influenced by genotype and genotype*diet interaction effects (Figure 4A, 4B). 

Specifically, Wt mice had significantly more ACF and early lesions per mm colon than KO 

mice. When genotype*diet interactions were examined, KO mice fed the HFL diet had more 

early lesions than KO mice fed the LFC diet, but in Wt mice, the LFC fed mice had a higher 

early lesion incidence than HFL fed mice. Conversely, the advanced lesion type IMC+IC was 

significantly influenced by sex and diet rather than genotype (Figure 4D). Mice fed LFC diet 

had more IMC+IC than the HFL group and females had more IMC+IC than males. 

Adenomas are intermediate in severity between early lesions and IMC+IC and were 

subsequently influenced significantly by genotype, sex, and diet effects with a tendency for 

genotype*diet interaction and genotype*diet*sex interaction (Figure 4C). Thus, as lesions 

develop and undergo progression to more malignant phenotypes in our adiponectin KO 

mouse model, the regulation of carcinogenesis switched from adiponectin-dependent to diet- 

and sex-dependent. 

Colon and adipose tissue respond differentially to high saturated fat-induced obesity. 

To evaluate whether the diet effects detected in tumor progression were associated with diet-

induced obesity, we measured the expression of genes involved in inflammation, insulin 

resistance, and adiponectin signaling in colon and adipose tissue. Both Wt and KO mice 
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responded to a high saturated fat diet with an elevation in pro-inflammatory cytokine gene 

expression in adipose tissue (Figure 5A, 5B). Both IL-6 and TNFα gene expression levels 

were significantly elevated in mice fed a high fat diet. Although genotype did not have an 

effect on IL-6 and TNFα expression itself, there was a diet*genotype interaction whereby Wt 

mice fed HFL diet had elevated TNFα and IL-6 expression compared to LFC fed mice, but 

there were no diet related differences in KO mice. Lcn2 was not affected by diet, but a 

tendency for a sex effect (P =0.0567) was detected with males expressing higher Lcn2 

transcript levels than females (data not shown).  

Colon tissue did not respond to the dietary treatment with the same inflammatory 

profile as adipose tissue (Figure 6). In colon, there were no diet-induced differences in TNFα 

(P = 0.8159) or TLR4 (P = 0.5170) gene expression between treatment groups (data not 

shown). It is possible that in our model DSS-induced inflammation is negating the effect of 

diet on colonic inflammation. However, AdipoR1 gene expression was reduced in mice fed 

the HFL diet (Figure 6A). There was a tendency for an effect of a genotype*sex interaction 

in AdipoR2 expression whereby expression was highest in male KO mice and female Wt 

mice (Figure 6B). We also detected a tendency for genotype*diet in insulin receptor, 

whereby KO mice had higher insulin receptor expression in the group fed LFC diet while Wt 

mice had higher insulin receptor expression in mice fed the HFL diet (Figure 6C). Thus, 

colonic tissue responds to diet-induced obesity with regulation of adiponectin receptor and 

insulin receptor expression in the absence of an inflammatory response to diet.  

Specific lesions are correlated with different serum and tissue parameters. To 

understand the associations between inflammation, insulin resistance, and tumor progression, 

we correlated specific colonic epithelial lesion types with serum and tissue parameters 
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(Table 4). Final body weight and fat pad weight are negatively correlated with advanced and 

total colonic lesions and serum insulin concentrations are negatively correlated with adenoma 

development. Conversely, blood glucose concentration is positively correlated with early, 

advanced, and total lesion development. Interestingly, although adiponectin and leptin alone 

are not significantly correlated to lesion number, a strong positive correlation was observed 

between serum adiponectin:leptin ratio and numbers of advanced and total colonic lesions. 

AdipoR1, TLR4, and insulin receptor expression are positively correlated to development of 

both early and advanced lesion types while AdipoR2 is correlated only to ACF and total 

early lesions. These correlations demonstrate a possible role for adiponectin and insulin 

signaling and TLR4 expression in colonic carcinogenesis and progressive development of 

malignancy. 

Discussion 

We report herein that adiponectin KO mice have lower incidence of AOM/DSS-

induced colorectal lesions than Wt mice, and that this effect was significant in ACF, early 

lesions, adenomas, and total lesions. This finding is supported by previous literature with 

respect to DSS-induced colitis, but not AOM-induced carcinogenesis. Fayad et al. 

determined that, in mice administered 2% DSS for 5 days, mice absent in adiponectin were 

protected from colonic inflammation (22). The authors showed that adiponectin directly 

binds basic fibroblast growth factor and heparin binding epidermal growth factor, thereby 

potentially inhibiting the protective effect of these growth factors against colitis in the 

epithelium. Conversely, Fujisawa et al. showed that in AOM-induced colorectal 

carcinogenesis in mice fed a high fat diet for 20 weeks, colon polyps were increased in 

adiponectin deficient mice compared to wild type mice (27). The authors proposed that 
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adiponectin was functioning to suppress epithelial proliferation under high dietary fat 

conditions, thus preventing lesion development. However, it is interesting to note that colonic 

epithelial proliferation was increased in adiponectin deficient mice compared with wild type 

mice in both studies. This may indicate a beneficial role for adiponectin deficiency-induced 

colonic epithelial proliferation in DSS-treated mice and a harmful role for proliferation in 

AOM-treated mice.  In our model, the inflammation induced with DSS following AOM 

administration seemed to favor the previously reported DSS response with respect to the role 

of adiponectin. Collectively, these studies indicate that adiponectin appears to have the 

potential to both promote and prevent colorectal epithelial damage, and the specific role of 

adiponectin is likely determined by microenvironmental influences, carcinogen, diet, and 

stage of carcinogenesis.   

We found that AdipoR1 is decreased in colon of mice fed HFL diet regardless of 

genotype. It has been shown that level of adiponectin receptor expression decreases as 

adiponectin sensitivity declines in obesity (5). Thus, we expected that adiponectin receptors 

would decline in Wt mice fed HFL diet but that no change would be observed in KO mice. 

We also found that AdipoR1 is positively correlated to ACF and IMC+IC lesion multiplicity 

which is consistent with the report by Kim et al. showing up-regulation of AdipoR1 

expression in human colon cancer tissue compared with normal colon tissue (28). Because 

adiponectin is not functioning to regulate AdipoR1 expression in adiponectin KO mice, it is 

possible that the alterations in AdipoR1 expression we observed in our adiponectin-deficient 

model were due to the presence of alternative ligands for AdipoR1. Several signaling 

molecules have been identified that interact with AdipoR1, including endo protein disulphide 

isomerase (ERp46), APPL1, protein kinase CK2, and receptor for activated C-kinase 1 
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(RACK1) (29,30,31,32). Of these signaling molecules, CK2 and RACK1 are involved in 

regulation of pancreatic beta cell signaling (33,34), a signaling cascade highly affected by 

diet-induced obesity. Moreover, CK2 and RACK1 have potential roles in regulation of colon 

tumorigenesis through regulation of apoptosis and the cell cycle (35,36). Thus, it is plausible 

that the presence of these AdipoR1 ligands may be in part responsible for the up-regulation 

of AdipoR1 expression in mice fed the HFL diet.  

To our knowledge, this is the first report of sex differences in development of pre-

neoplastic and neoplastic colonic lesions in adiponectin KO mouse model administered 

AOM/DSS. In this study, female mice developed greater adenoma and IMC+IC multiplicity 

than male mice. The development of these advanced lesions is likely due to sex-specific 

differential response to HFL diet. Males had higher insulin concentrations than females and a 

tendency for lower fat pad weight when normalized to body weight. This is supported by 

reports of sex differences in insulin regulation, inflammation, and adiposity in response to 

high fat diet (37,38). This is also supported by epidemiological data which show an 

association between sex differences and dietary factors in colorectal cancer incidence in 

humans (39). In transgenic mice with increased circulating adiponectin concentrations, a sex 

difference was observed with males developing greater tumor multiplicity than females (40). 

Another explanation for differences between sexes is hormonal disparity. Although estradiol 

has been implicated as having a role in the initiation stage of colorectal tumorigenesis (41), in 

the DSS model of colitis, estrogen increased histological scores and disease severity in 

female mice (42). Our findings are inconsistent with human epidemiological data that show 

higher incidence of colorectal cancer in males than females (43), and warrant further 

mechanistic investigation into these sex differences.  
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Mice of both genotypes responded to high fat diet as expected with an increase in the 

pro-inflammatory gene expression in adipose tissue of mice fed the HFL vs. LFC diet. 

However, diet-induced inflammation was not observed in the circulation or colonic tissue. 

This is likely due to the short duration of dietary treatment, which was sufficient for 

development of obesity and leptin resistance, but not metabolic complications. Bullen et al. 

reported that 10 wks of high fat diet feeding are needed to induce a depression in circulating 

adiponectin concentrations in mice, and that insulin concentrations are lowest at 6 weeks of 

high fat feeding and become hyperinsulinemic after 6 weeks on a high fat diet (44). Although 

diet-induced inflammation was not detectable in colon tissue, both LFC mice and females 

had more advanced lesions than HFL and male groups, respectively. We assert three possible 

reasons for this association: 1) differences in diet composition and physiological properties 

such as glycemic index (45) contributed to colorectal tumorigenesis independently or through 

interaction with genotype or sex-related parameters, 2) tumor formation may be promoted by 

a low fat diet (46) as observed by Nakamura et al. in human subjects, or 3) the different types 

and amounts of dietary fat in the LFC vs. HFL diets resulted in IGF-I and IGF-II receptor 

regulation (47) that contributed to suppression of tumor development in HFL mice. The diets 

were structured such that protein was balanced calorically. Because the LFC-fed mice 

consumed more daily feed on a weight basis but less on a caloric basis, the imbalance of both 

protein and micronutrients consumed may have contributed to diet effects. 

Herein, we show that insulin receptor expression is regulated by genotype*diet 

interaction and is positively correlated with development of ACF. This increase in insulin 

receptor expression is due in part to the tendency for increased circulating insulin in the Wt 

genotype. This finding is consistent with the literature that reports increased insulin receptor 
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expression in colonic tumors compared with normal mucosa (48). Both insulin and leptin 

have been shown to independently promote colorectal tumorigenesis (15,49). However, in 

this study, leptin is increased in mice fed the HFL diet regardless of genotype and has no 

significant association with colon lesion multiplicity. Interestingly, we observed a strong 

positive correlation between serum adiponectin:leptin ratio and numbers of adenomas, 

IMC+ICs, and total lesions that was related to the overall effect of diet on adenomas, 

IMC+IC, and total lesions. Low adiponectin:leptin ratio has been recognized recently as a 

prognostic marker related to severity and adverse outcome in colorectal cancer (50) and can 

also be used as a measure of insulin resistance (51). However, we observed increased 

severity of colonic lesions in mice with a higher adiponectin:leptin ratio, indicating the 

importance of adiponectin function in the AOM/DSS model and the previously reported 

ability of adiponectin to modulate the proliferative effects of leptin in colon epithelial cells 

(52). Thus, in our model, insulin signaling and serum adiponectin:leptin ratio, but not 

adiponectin and leptin concentrations alone, are associated with colorectal tumorigenesis.  

In summary, we report for the first time that AOM/DSS-induced colorectal 

carcinogenesis is regulated differentially to adiponectin status, sex, and diet. Early lesion 

development is determined by genotype, adenomas are determined by genotype, diet, and 

sex, and advanced colonic neoplasms are determined by diet and sex. Thus, we propose that 

molecular patterns change throughout development of colorectal cancer such that adiponectin 

plays an initial role in tumorigenesis that is subsequently regulated by diet and sex as lesions 

become more advanced. This theory is supported by the publication by Otake et al. that 

recognized serum adiponectin as a significant risk factor for early cancer and adenomas in 

patients with colorectal cancer, but found no association between adiponectin and advanced 
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cancer (53). Based on the literature, it is likely that this sequence of events is specific to 

AOM/DSS-induced colorectal cancer and not the AOM-only model of carcinogenesis. Our 

correlations indicate that insulin and glucose regulation, adiponectin signaling, and TLR4 are 

involved in these events. Future studies are warranted to identify the molecular changes 

occurring at the transition from early to advanced lesions.  
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Tables 

Table 1. Diet Composition 

 

Ingredient LFC
1 

(g) HFL
1
 (g) 

Casein
2
 140 196 

Sucrose
2
 100 100 

Corn Starch
2
 456 88 

Maltodextrin
2
 155 155 

Soybean Oil
2
 50  

Lard
2
  360 

Cholesterol
2
  1.5 

Cellulose
2
 50 50 

Vitamin Mix
2
 10 10 

Mineral Mix
2
 35 35 

Choline Bitartrate
2 

 2.5 2.5 

L-Cystine
2
 1.8 1.8 

THBQ
2
 0.008 0.008 

     Total (g) 1000.0 1000.0 

% Protein (Total kcal) 14.69 14.69 

% Carbohydrate (Total 

kcal) 73.65 25.4 

% Fat (Total kcal) 11.66 59.96 

Density (kcal/g) 3.86 5.4 
1
Adapted from AIN-93M Diet  

2
Harlan Teklad, Madison, WI 
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Table 2. Quantitative Real Time PCR Primers 

 

 

 

 

 

 

 

 

 

 

Target Forward Primer Reverse Primer 

β-Actin  TGAGAGGGAAATCGTGCGTGACAT ACCGCTCGTTGCCAATAGTGATGA 

Gapdh TCAACAGCAACTCCCACTCTTCCA ACCCTGTTGCTGTAGCCGTATTCA 

AdipoR1 TCCTGACTGGCTGAAAGACAACGA AGATGTTGCCAGTCTCTGTGTGGA 

AdipoR2 TGAGCGCTTCTTTCCTGGCAAATG ATTCCTGCAGGTTTGAGACTCCGT 

Insulin 

Receptor TTCTTTCCTGCGTGCATTTCCCAC TTAATCAGGGTGGCCAGTGTGTCT 

IL-6 TCCAGTTGCCTTCTTGGGACTGAT AGCCTCCGACTTGTGAAGTGGTAT 

TNFα  CCAACGGCATGGATCTCAAAGACA AGATAGCAAATCGGCTGACGGTGT 

Lcn2 TGCCACTCCATCTTTCCTGTT GGGAGTGCTGGCCAAATAAG 

TLR4 CCGCTCTGGCATCATCTTCATTGT TCCTCCCATTCCAGGTAGGTGTTT 

7
4
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Table 3. Body Composition and Serum Parameters 

 

 

 

 

 

Genotype Sex Diet 

Weight Gain 

(g)
a
 

Fat Pad 

Weight (g)
b
 

Glucose 

(mg/dl)
c
 

Insulin (ng/ml)
d
 

Adiponectin 

(µg/ml)
e
 

Leptin 

(ng/ml)
f
 

KO F LFC 3.8 ± 1.4
a
 1.21 ± 0.10

c
 267 ± 31

a
 0.29 ± 0.40

a
 N/A 14.2 ± 7.7

a,b
 

KO F HFL 7.3 ± 1.2
b,c

 1.24 ± 0.08
c
 283 ± 28

a,b
 0.48 ±  0.35

a,b
 N/A 28.7 ± 5.5

b,c
 

Wt F LFC 5.1 ± 1.3
a,b

 1.12 ± 0.09
b,c

 325 ± 28
a,b,c

 0.88 ±  0.32
a,b,c

 7.88 ± 0.60
b
 11.1 ± 4.9

a
 

Wt F HFL 10.2 ± 1.4
c,d

 1.22 ± 0.08
c
 312 ± 31

a,b,c
 0.64 ±  0.36

a,b,c
 7.35 ± 0.61

a,b
 25.6 ± 6.2

a,b,c
 

KO M LFC 6.3 ± 1.2
a,b

 0.89 ± 0.08
a,b

 293 ± 27
a,b

 1.40 ±  0.29
b,c

 N/A 13.3 ± 6.1
a,b

 

KO M HFL 10.8 ± 1.3
c,d

 1.24 ± 0.10
c
 341 ± 28

b,c
 1.66  ± 0.33

c
 N/A 40.5 ± 5.8

c
 

Wt M LFC 8.2 ± 1.2
b,c

 0.85 ± 0.09
a
 386 ± 27

c
 1.54  ± 0.31

c
 6.10 ± 0.65

a
 14.0 ± 5.6

a,b
 

Wt M HFL 12.7 ± 1.4
d
 1.06 ± 0.11

a,b,c
 370 ± 27

c
 2.58  ± 0.32

d
 6.45 ± 0.63

a,b
 55.9 ± 5.7

d
 

7
5
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Values are least squares means  s.e. Different letters denote statistical significance (P < 0.05). 
a 
Weight gain is calculated over 7 ½ wk. of experiment diet feeding. Significant effect of diet (5.9 ± 0.6 vs. 10.3 ± 0.6 for LFC vs. 

HFL, P < 0.0001); Significant effect of genotype (7.1 ± 0.6 vs. 9.1 ± 0.6 for KO vs. Wt, P = 0.0191); Significant effect of sex 

(6.6 ± 0.8 vs. 9.5 ± 0.8 for female vs. male, P = 0.0376) 
b
Fat pad weight normalized to final body weight.

 
Significant effect of diet (1.02 ± 0.05 vs. 1.19 ± 0.05 for LFC vs. HFL, P = 

0.0148); Significant sex effect (1.20 ± 0.06 vs. 1.01 ± 0.06 for female vs. male, P = 0.0489) 
c
 Significant effect of genotype (296 ± 13 vs. 348 ± 14 for KO vs. Wt, P = 0.0074); Tendency for sex effect (297 ± 18 vs. 347 ± 17 

for female vs. male, P = 0.0878) 
d
 Significant effect of sex (0.57 ± 0.22 vs. 1.79 ± 0.18 for female vs. male, P = 0.0004); Tendency for genotype effect (0.96 ± 0.16 

vs. 1.41 ± 0.16  for KO vs. Wt, P = 0.0511) 
e
 Significant effect of sex (7.61 ± 0.43 vs. 6.27 ± 0.47 for female vs. male, P = 0.0366) 

f
 Significant diet effect (13.2 ± 2.6 vs. 37.7 ± 2.6 for LFC vs. HFL, P < 0.0001); Significant diet*sex interaction (P = 0.0112) 

 

7
6
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Table 4. Lesion-Specific Correlations 

Data represented as correlation R (p-value).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  ACF Early Adenoma IMC+IC Total Lesions 

Serum or body composition parameter 

Final Body Weight -0.18 (0.13) -0.19 (0.11) -0.37 (0.0014) -0.32 (0.0061) -0.33 (0.0052) 

Gonadal Fat 

Weight -0.16 (0.17) -0.16 (0.19) -0.37 (0.0012) -0.31 (0.0078) -0.30 (0.0096) 

Serum Insulin -0.07 (0.59) -0.13 (0.33) -0.25 (0.05) -0.14 (0.29) -0.20 (0.13) 

Adiponectin:Leptin 0.50 (0.12) 0.59 (0.054) 0.79 (0.004) 0.69 (0.019) 0.72 (0.013) 

Blood Glucose 0.35 (0.0023) 0.34 (0.0038) 0.22 (0.069) 0.38 (0.0009) 0.37 (0.0014) 

Colon gene expression parameter (SQ) 

AdipoR1 0.29 (0.050) 0.21 (0.16) 0.11 (0.49) 0.39 (0.0073) 0.32 (0.031) 

AdipoR2 0.34 (0.030) 0.37 (0.018) 0.21 (0.19) 0.14 (0.40) 0.27 ( 0.091) 

Insulin Receptor 0.42 (0.0004) 0.34 (0.0055) 0.098 (0.44) 0.39 (0.0015) 0.35 (0.0037) 

TLR4 0.50 (<0.0001) 0.42 (0.0004) 0.17 ( 0.16) 0.50 (<0.0001) 0.41 (0.0005) 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Total lesion development is influenced by genotype, diet, and sex. 

 

Total lesions induced by AOM/DSS treatment were measured by histopathology lesion count 

per mm colon. Significant genotype effect (0.32 ± 0.04 vs. 0.46 ± 0.04 for KO vs. Wt, P = 

0.0091); Tendency for diet effect (0.43 ± 0.04 vs. 0.34 ± 0.04 for LFC vs. HFL, P = 0.0808); 

Tendency for sex effect (0.46 ± 0.05 vs. 0.32 ± 0.05 for female vs. male, P = 0.0819); 

Tendency for genotype*diet interaction (P = 0.0554).  

 

 

 

 

 



www.manaraa.com

 79 

 

Figure 4. Early lesions are influenced by genotype and diet whereas advanced lesions are 

influenced by sex.  

 

Histological analysis of early and advanced lesion number per mm colon. (A) Significant 

genotype effect (0.14 ± 0.02 vs. 0.20 ± 0.02, P = 0.0253); Significant genotype*diet 

interaction (P = 0.0330). (B) Significant genotype effect (0.18 ± 0.02 vs. 0.26 ± 0.02 for KO 

vs. Wt, P = 0.0222); Significant genotype*diet interaction (P = 0.0140). (C) Significant 

genotype effect (0.09 ± 0.01 vs. 0.14 ± 0.01 for KO vs. Wt, P = 0.0054); Significant diet 

effect (0.13 ± 0.01 vs. 0.09 ± 0.01 for LFC vs. HFL, P = 0.0388); Significant sex effect (0.16 

± 0.02 vs. 0.07 ± 0.02 for female vs. male, P = 0.0076); Tendency for genotype*diet 

interaction (P = 0.0911); Tendency for genotype*diet*sex interaction (P = 0.0900). (D) 

Significant diet effect (0.13 ± 0.02 vs. 0.07 ± 0.02 for LFC vs. HFL, P = 0.0077); Significant 

sex effect (0.13 ± 0.02 vs. 0.06 ± 0.02 for female vs. male, P = 0.0477). 
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Figure 5.  HFL diet induced a pro-inflammatory expression profile in adipose tissue. 

 

Quantitative RT-PCR gene expression analysis of adipose tissue expressed as log SQ. (A) 

Significant effect of diet (1.58 ± 0.07 vs. 1.84 ± 0.06 for LFC vs. HFL, P = 0.0047); 

Significant effect of genotype*diet interaction (P = 0.0184). (B) Significant diet effect (4.20 

± 0.06 vs. 4.44 ± 0.05 for LFC vs. HFL, P = 0.0014); Significant sex effect (4.11 ± 0.08 vs. 

4.52 ± 0.05 for female vs. male, P = 0.0008); Tendency for genotype*diet interaction (P = 

0.0943). 
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Figure 6. Diet altered AdipoR1 expression in colonic tissue. 

 

Quantitative RT-PCR gene expression analysis of colon tissue expressed as log SQ. (A) 

Significant effect of diet (2.19 ± 0.12 vs. 1.85 ± 0.12 for LFC vs. HFL, P = 0.05). (B) 

Tendency for genotype*sex interaction effect (P = 0.0645). (C) Tendency for genotype*diet 

interaction effect (P = 0.0685). 
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CHAPTER 4. LOW DOSE DIETARY RESVERATROL HAS DIFFERENTIAL 

EFFECTS ON COLORECTAL TUMORIGENESIS IN ADIPONECTIN KNOCKOUT 

AND WILD TYPE MICE 
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Rebecca L. Boddicker, Elizabeth M. Whitley, Jeremy E. Davis, Diane F. Birt,  

Michael E. Spurlock 

 

Abstract 

Obesity is associated with a decrease in the anti-inflammatory hormone, adiponectin, and 

increases in the circulating concentrations of multiple pro-inflammatory cytokines. These 

changes contribute to colon tumorigenesis. Resveratrol increases adiponectin production in 

adipocytes and attenuates the development of colon cancer. Thus, we hypothesized that 

adiponectin is an integral component of the mechanism by which resveratrol antagonizes 

colorectal tumorigenesis. To investigate this, we induced tumorigenesis in adiponectin 

knockout (KO) and wildtype (Wt) C57BL/6 mice through combined azoxymethane and DSS 

treatment during which mice were fed a high fat, lard-based diet (HFL), or the same diet 

containing 20 mg/kg resveratrol (HFL+R). After 14 weeks on diet, Wt mice gained more 

weight, and on a percentage basis, had higher fat mass and lower lean mass than KO mice. 

Resveratrol tended to attenuate this response in male Wt mice. Resveratrol also tended to 

reduce aberrant crypt foci development and decrease circulating interleukin 6 and insulin 

concentrations in male but not female Wt mice. Taken together, resveratrol improved overall 

health of obese Wt but not KO mice as hypothesized with a differential sex response. 

Introduction 

Visceral adiposity is highly associated with the development of colorectal cancer and 

has now been identified as an independent risk factor for colorectal cancer (1,2). Obesity is 
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associated with changes in adipose tissue that promote colon cancer development including a 

decrease in the anti-inflammatory hormone, adiponectin, and increases in leptin, insulin, and 

IL6 (3,4,5). Studies using a co-culture system or conditioned media show that adipocytes can 

stimulate proliferation of colon cancer cells (5,6). Moreover, culturing colon cancer and 

intestinal epithelial cells with adiponectin decreases inflammation, activates AMP-activated 

protein kinase (AMPK), and decrease proliferation (7).  

Resveratrol (3,5,4’ trihydroxystilbene), an activator of sirtuin 1 (Sirt1) and AMPK, is 

a compound naturally found in grapes and red wine. Resveratrol has been studied extensively 

for its anti-inflammatory and anti-carcinogenic properties. Several groups have demonstrated 

that resveratrol supplementation attenuates colitis and colon tumor multiplicity in mice 

exposed to dextran sodium sulfate (DSS) and azoxymethane (8,9,10,11).  In vitro studies to 

determine the mechanism of resveratrol indicate an inhibitory effect on pro-inflammatory 

gene expression, including toll like receptor 4 (12) and cyclooxygenase 2 (13), and decreased 

proliferation of colonocytes (14). 

Recently, a role for resveratrol in modulating the adipokine profile has been 

established in the literature. The addition of resveratrol to a high fat diet increased 

mitochondrial number and improved insulin sensitivity and the overall metabolic profile in 

obese mice (15).  In vitro studies of resveratrol signaling in adipocytes show attenuation of 

inflammation via inhibition of nuclear factor kappa B (16), and inhibition of adipogenesis 

(17,18) through a down-regulation in peroxizome proliferator-activated receptor  and other 

adipogenic genes. Importantly, resveratrol increases adiponectin expression in human 

visceral adipocytes (19) and 3T3-L1 adipocytes (20).    However, the role of resveratrol in 

colorectal cancer development and the potential interaction between resveratrol and 
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adiponectin has not been reported in the context of obesity.  We used adiponectin knockout 

mice, coupled with diet-induced obesity, to test the hypothesis that adiponectin mediates the 

anti-inflammatory and anti-carcinogenic effects of resveratrol in obesity. This investigation 

was focused on early lesion development, which we have previously reported to be 

modulated by low dose dietary resveratrol (21). 

Materials and Methods 

Animals and Diets. Forty adiponectin knockout (KO) and sixty wildtype (Wt) male 

and female mice were generated using our previously established colony (22). Complete 

randomized block design was used with blocks consisting of at least one animal from each 

diet*sex*genotype combination. At 6 weeks of age ± 1 week, mice were moved to individual 

housing and acclimated on AIN-93M diet (Harlan Teklad, Madison, WI) for 1 week. 

Following acclimation, all mice were administered a single injection of 10 mg/kg body 

weight AOM (Sigma Aldrich, St. Louis, MO) immediately followed by 5 days of 1% DSS 

(MW 36,000-50,000, MP Biomedicals, Solon, OH) in drinking water. DSS water intake was 

measured daily, and was used to calculate DSS load (mg DSS consumed per g body weight) 

for use in statistical analyses. Concurrent with the start of AOM/DSS administration, forty 

Wt and forty KO mice were randomly assigned one of two diets: high fat lard (HFL) or high 

fat lard with resveratrol (HFL+R). An additional twenty Wt mice were maintained on the 

AIN-93M low fat control (LFC) diet for validation of high fat diet-induced obesity. The diet 

compositions are as previously reported (22) with the addition of 20 mg/kg diet resveratrol 

(Sigma Aldrich, St. Louis, MO) in the HFL+R diet (Table 5) to represent the amount 

attainable from a low-dose dietary resveratrol aglycone supplements. Experimental diets 

were fed ad libitum for 14 weeks throughout which body weight and dietary intake were 
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measured daily. Animals were housed in a climate controlled facility with a 12:12 hr 

light:dark cycle. All experimental protocols for animal care and use were approved by the 

Institutional Animal Care and Use Committee at Iowa State University, Ames, Iowa. 

Sample Collection. Prior to sacrifice, animals were fasted for 6-8 hrs. Animals were 

sacrificed by CO2 asphyxiation followed by terminal cardiac puncture for serum collection. 

Gonadal fat pad and colon tissues were excised and weighed. Distal colon sections 

(approximately 2 cm long) were rinsed in PBS and placed in buffered formalin for lesion 

histology. Gonadal fat pad and carcasses were flash frozen in liquid nitrogen and stored at -

80ºC.  

Lesion Histology. Colons were sectioned to allow for histologic analysis of the tissue 

and the use of remaining colonic tissue for molecular analyses. Aberrant crypt foci (ACF), 

mucin depleted foci, and adenomas were counted in representative histologic sections of 

distal colon and the number of each lesion type per mm colon determined.  Formalin-fixed 

colon samples were processed routinely for histopathology, embedded to allow perpendicular 

sectioning, sectioned at 5 µm, and stained with hematoxylin and eosin. Briefly, 20X digital 

images of each tissue section were collected using a Nikon Eclipse 55i microscope and DSFi-

1 digital camera system. The total length of each sample was determined using morphometric 

analysis (Image J software, NIH) of digital photomicrographs of histologic sections of colon. 

The sum of each image for the tissue sample was converted to mm by comparison with a 

micrometer standard. A veterinary pathologist blinded to mouse treatment groups evaluated 

each tissue section histologically. Aberrant crypt foci (ACF), mucin depleted foci, and 

adenomas were determined for each sample using standard histologic criteria (23,24). 

Bifurcated crypts were included as ACF. Mucin depleted foci were identified as crypts absent 
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of goblet cell differentiation. The data is presented as number of ACF and total lesions per 

mm colon. 

Body Composition. Frozen mouse carcasses (excluding blood, gonadal adipose tissue, 

and colon) were thawed to room temperature. Following system calibration, fat mass and 

lean body mass was determined using an EchoMRI whole body composition analyzer 

(Houston, TX). Composition analysis was also performed on 10 grams of gonadal fat pad 

samples from a representative sample of mice fed each diet for use as a correction 

coefficient. The correction coefficients for respective diets were applied to the weight of 

removed adipose tissue from each mouse, and the carcass composition data adjusted 

accordingly to obtain whole body composition. Whole body percent fat and lean were 

calculated by dividing total weight of fat (g) and lean (g) by whole body weight (g), 

respectively. 

Adipocyte Size. Frozen gonadal fat pads samples (n = 4 per diet*genotype*sex 

combination) were fixed in 10% buffered formalin overnight and processed routinely for 

histologic sections. Five µm sections were stained with hematoxylin and eosin. To analyze 

for adipocyte size and number, four fields were captured at 20X magnification for each 

mouse. Adipocyte area was determined using AxioVision v4.8.2.0 (Carl Zeiss, Germany).  

Serum Analyses. Blood glucose was measured by commercial glucometer (LifeScan, 

Milpitas, CA). Serum from terminal blood collection was assayed by ELISA or Multiplex. 

Total and high molecular weight adiponectin was measured by ELISA (Alpco Diagnostics, 

Salem, NH). Insulin, MCP1, IL6, TNF, and leptin were measured using a 5-plex Milliplex 

Mouse Adipokine kit (Millipore, Billerica, MA) on a multiplex system (Bioplex, BioRad, 

Hercules, CA). 
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Caco-2 and Stromal Vascular Cell Culture 

 Caco-2 Culture. Caco-2 cells (ATCC, Manassas, VA) (passage 18) were cultured at 

37C, 5% CO2 in Dulbelco’s Modified Eagle Medium (DMEM, Sigma Aldrich, St. Louis, 

MO) with 10% heat-inactivated fetal bovine serum (FBS, Hyclone, Logan, UT), 100 U/ml 

penicillin/100 µg/ml streptomycin, and 1% non-essential amino acids (MEM, Gibco, 

Billings, MT). 

 Stromal Vascular Cell Isolation. Stromal vascular cells (SVCs) were isolated from 

gonadal fat pads of Wt and KO mice obtained from the adiponectin null breeding colony. 

Briefly, adipose tissue was excised, placed in cold 1x HBSS buffer, and minced. Tissue was 

then digested in 50% HBSS/50% LG-DMEM medium with 200 U/ml collagenase shaking 

for 1 hr. at 37ºC. Digested cells were centrifuged 5 min, 1,000 x g and digestion media was 

removed. Cells were then incubated at room temperature in red blood cell lysis buffer (0.154 

M NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) and centrifuged at 1,000 x g to remove red blood 

cells. Remaining cells were re-suspended in LG-DMEM growth medium and passed through 

a 100 µm filter to isolate the SVC fraction. SVCs were grown to passage 2 under 37C, 5% 

CO2 in LG-DMEM growth medium with 10% FBS, 100 U/ml penicillin, 100 µg/ml 

streptomycin, and 0.1 mg/ml gentamicin and amphotericin B.   

Experiment 1. Wt and KO SVCs were plated according to manufacturer’s instructions 

and allowed to adhere for 2 hr. For measure of cell proliferation, media was removed and 

fresh medium containing 0, 25, or 50 M resveratrol aglycone (Sigma Aldrich, St. Louis, 

MO) and BrdU reagent (Chemicon International, Temecula, CA) was added to the cells. 

BrdU incorporation was measured after 18 hr. The same procedure was followed for Caco-2 

cells with 6 hr BrdU reagent incubation before measurement. 
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Experiment 2. Wt and KO SVCs (passage 2) were grown to 80% confluence and 

differentiated using a previously described protocol (25). At Day 11 post-differentiation, the 

cells were pre-treated for 18 hr. with fresh medium containing 0 or 25 µM resveratrol 

aglycone (Sigma Aldrich, St. Louis, MO) in DMSO. After 18 hr. pre-treatment, 100 ng/ml 

LPS was added to the medium for an additional 24 hr. treatment. The culture medium was 

collected for measurement of mouse IL6 concentration by ELISA (R&D Systems, 

Minneapolis, MN). 

The inflammatory response of Caco-2 cells to resveratrol and adiponectin was 

measured using conditioned media. The conditioned media was obtained by applying fresh 

medium (with 1% fetal bovine serum) to fully differentiated Wt and KO adipocytes for 24 hr. 

Caco-2 cells were incubated for 18 hr. in unconditioned or conditioned medium from Wt or 

KO adipocytes with DMEM containing 0 or 25 µM resveratrol. After pre-treatment, 10 

µg/ml LPS and 50 ng/ml TNFα (Sigma Aldrich, St. Louis, MO) were added to the culture 

medium, and cells were incubated for and additional 24 hr. Culture medium was collected for 

cytokine analysis of human IL6 and IL1 by ELISA (R&D Systems, Minneapolis, MN). All 

experiments had a minimum of 4 samples per treatment. 

Statistical Analyses. All residuals were plotted and tested for normality. Data were 

analyzed using general linear models procedure in SAS (Version 9.2; SAS Institute, Cary, 

NC). In the mouse experiment, genders were analyzed separately with diet, genotype, and 

block considered fixed effects with the following exception. Those data containing only Wt 

mice (serum adiponectin and LFC diet weight, intake, and blood glucose data) were analyzed 

with gender, diet, and block considered fixed effects. Body weight and DSS intake were used 

as covariates in relevant analyses. For cell culture studies, genotype of SVCs or conditioned 
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media and treatment (resveratrol or LPS) were considered fixed effects. Data is reported as 

least square means  s.e.m. Statistical significance is defined as p < 0.05 and tendency for 

significance as p < 0.1.  

Results 

Weight gain and dietary intake. We first confirmed diet-induced obesity in Wt mice 

by showing Wt mice gained significantly more weight when fed the HFL diet as compared to 

the LFC diet (Figure 7). Adiponectin genotype altered weight gain in male mice (P = 

0.0009), but not females, when fed the HFL diet (Figure 8A). Interestingly, resveratrol had a 

tendency to decrease weight gain in the Wt but not KO genotype in both male (P = 0.057) 

and female (P = 0.059) mice. These observed differences in weight gain were not due to 

differences in dietary intake (Figure 8). 

Body composition and adipocyte size. Overall, male Wt mice had significantly higher 

percent body fat and lower percent lean mass than male KO mice (Figure 9A,B). There was 

a tendency for the HFL+R diet to reduce percent body fat (P = 0.077) and increase percent 

lean mass (P = 0.087) in Wt male mice (Figure 9A,B). This HFL+R diet effect was not 

observed in KO male mice, suggesting that resveratrol has a tendency to attenuate high fat 

diet-induced adiposity only in the presence of adiponectin. In contrast, there were no 

significant diet or genotype effects on body composition observed in female mice, likely as a 

result of the greater variability observed within treatments (Figure 9C,D). 

 Analysis of adipocyte size further demonstrated a dimorphic sex response to genotype 

and experimental diets. In male mice, a genotype effect, but not a dietary effect, was 

observed in which a greater average adipocyte size was observed in Wt male mice than in 

KO male mice (Figure 10A). Conversely, females exhibited a significant diet effect, but not 
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a genotypic effect (Figure 10C). In female mice, adipocyte area was larger in HFL-fed mice 

than in HFL+R fed mice. This effect was significant for the Wt genotype with a tendency for 

significance in the KO genotype.  

ACF and total lesion development. Aberrant crypt foci (ACF) were the most abundant 

lesion type observed in the distal colon of all mice. In addition to ACF, mucin depleted foci 

and adenomas were observed, although primarily in females. Overall, there were no 

significant differences in lesion number between diet and genotype groups in males or 

females. However, there was a tendency for a genotype*diet interaction in ACF (P = 0.066) 

and total lesions (P = 0.092) of male mice (Figure 11A,B). Specifically, the HFL+R diet 

tended to decrease ACF and total lesion development (P = 0.095, P = 0.0773, respectively) in 

Wt male mice but had no effect on KO male mice (Figure 11A,B). In female mice, ACF and 

total lesions tended to be greater in Wt compared to KO genotypes (P = 0.062 and P = 0.096, 

respectively), but no interaction between diet and genotype was observed (Figure 11C,D).  

Serum Parameters. Serum insulin was significantly elevated in Wt male mice 

compared to KO male mice in males (Tables 12A, 2B).  However, HFL+R diet attenuated 

the elevation in Wt insulin concentrations with no effect on KO mice. The glucose:insulin 

ratio, an indicator of insulin sensitivity to glucose, tended to be higher in male KO mice 

compared to male Wt (P = 0.099). Females did not display diet- or genotype-dependent 

differences in glucose and insulin concentrations or glucose:insulin ratio. Thus, whereas 

glucose homeostasis had a tendency to be improved by resveratrol in Wt male mice, female 

mice were not responsive to dietary resveratrol. 

There was a tendency for higher serum total adiponectin concentrations in HFL+R 

fed mice compared to HFL fed mice for both Wt males (P = 0.094) and Wt females (P = 
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0.099) (Tables 6A, 6B). However, there were no differences observed between levels of high 

molecular weight adiponectin in mice of either sex fed either diet or in the ratio of HMW 

adiponectin:total adiponectin (data not shown). Serum IL6 concentrations in males were 

significantly affected by both diet (P = 0.043) and genotype (P = 0.021) with concentrations 

higher in HFL compared to HFL+R and in Wt mice compared to KO. Interestingly, there was 

a tendency (P=0.061) for a decrease in IL6 concentrations of mice fed HFL+R compared to 

HFL in Wt but not KO male mice. Serum MCP1 concentrations were similarly affected by 

both diet and genotype in male mice. However, in contrast to IL6 regulation, MCP1 was 

significantly decreased by HFL+R diet compared to HFL only in KO male mice. Leptin and 

TNF concentrations were not affected by diet or genotype in males or females. 

Furthermore, female mice did not demonstrate any diet or genotype effects with regard to 

IL6 or MCP1 serum concentrations.  

Lesion and serum correlations. A distinct sexual dimorphism exists in the correlation 

between serum parameters and colon lesions (Table 7). In males, ACF number was 

negatively correlated to total adiponectin (P = 0.03) and positively correlated to MCP1 (P = 

0.02) and TNFα (P = 0.098) concentrations. These correlations were reflected in total lesion 

number.  In addition, there was a tendency for a negative correlation between total lesions 

and serum leptin concentration (P = 0.07). In females, ACF and total lesions were not 

correlated with adiponectin and leptin concentrations but were both strongly positively 

correlated with serum IL6 (P < 0.0001) and TNF (P < 0.0001).  

Stromal vascular cell (SVC) and Caco-2 proliferation and inflammation. To further 

investigate the interaction between adiponectin and resveratrol in adipocytes and colon 

cancer cells, we studied SVCs isolated from gonadal adipose tissue from Wt and KO mice 
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and Caco-2 colon cancer cells (Figures 12,13). Basal SVC proliferation was significantly 

greater in KO than Wt SVCs (Figure 12A). This demonstrated a clear phenotype difference 

between adiponectin KO and Wt SVCs prior to differentiation and endogenous adiponectin 

production by Wt cells. Treatment of the cells with resveratrol lowered KO cell proliferation 

to the level of Wt cells, but had no effect on Wt cell proliferation. We then measured 

proliferation of Caco-2 colon cancer cells treated with media conditioned from differentiated 

Wt or KO SVCs.  These conditioned medias contained 0.21 ng/ml and 0.02 ng/ml 

adiponectin, respectively. The Caco-2 cells treated with KO SVC-conditioned media had 

higher basal proliferation than those treated with Wt SVC-conditioned media, but both 

treatments caused increased proliferation when compared to the unconditioned media control 

(Figure 12B). Resveratrol treatment reduced proliferation in cells treated with both KO- and 

Wt-conditioned media to the level of proliferation in unconditioned media. Thus, despite 

increased proliferation in the absence of adiponectin, the effect of resveratrol on proliferation 

of SVCs and Caco-2 cells is not dependent on adiponectin. 

We then measured the response of adipocytes and colon cancer cells culture in 

conditioned media to inflammatory stimuli initiated by LPS or LPS/TNFα, respectively. 

Differentiated KO SVCs had greater basal IL6 production than Wt SVCs.  In both cell types, 

IL6 secretion was significantly elevated with the addition of LPS (Figure 13A). 

Interestingly, resveratrol treatment lowered LPS-induced inflammation as measured by IL-6 

concentration in Wt cells but not in KO cells. Conversely, Caco-2 cells treated with KO 

SVC- or Wt SVC-conditioned media had uniformly low basal IL6 production, but were both 

responsive to LPS/TNF treatment (Figure 13B). Moreover, resveratrol treatment 

effectively reduced IL6 production to basal levels in LPS/TNF stimulated KO SVC- and Wt 
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SVC-conditioned Caco-2 cells. Therefore, resveratrol effectively attenuated LPS-induced IL6 

production in Wt but not KO adipocytes, but was effective in reducing LPS/TNF-induced 

IL6 production in KO SVC-conditioned and Wt SVC-conditioned Caco-2 cells.  

Discussion 

 Herein we show a tendency for attenuation of early lesion development by resveratrol 

that is dependent on the presence of adiponectin in male mice. Moreover, male mice had a 

significant negative correlation between serum adiponectin and ACF. To our knowledge, this 

is the first report of this interaction in the context of obesity-associated colon carcinogenesis. 

Interestingly, this interaction is not evident in female mice. This sex disparity is most likely 

explained by the influence and variability associated with female reproductive hormones. In 

support of this, two studies have demonstrated an interaction between female reproductive 

hormones and obesity-related insulin signaling and inflammation in mouse models using 

established colon cancer lines (26,27). However, the effect of reproductive hormones is not 

well characterized under tumorigenic conditions. 

We also showed that resveratrol-associated improvement in the co-morbidities of 

obesity were evident primarily in Wt male mice. Specifically, Wt male mice fed HFL+R diet 

showed a tendency for reduced weight gain, increased percent lean mass, decreased percent 

body fat, and overall improved serum profile. We propose three possible explanations for this 

finding: 1) The improvement in the serum profile of Wt male mice may be in part due to the 

tendency for resveratrol to increase serum adiponectin concentration as we hypothesized. 

However, resveratrol also tended to increase serum adiponectin in females without a parallel 

improvement in serum inflammatory and glucose metabolism endpoints. This illustrates a 

sexual dimorphic response to resveratrol and adiponectin that may be simply due to the more 
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variable response of female mice to carcinogen and dietary treatments. 2) In addition to 

actions mediated via adiponectin, it is possible that resveratrol had inhibitory effects on the 

elevated adipogenesis and inflammation of Wt mice through Sirt1. This role for resveratrol 

has been previously demonstrated in vivo and in vitro (16,17,28) 3) Wt mice were more 

obese and had a more pro-inflammatory profile than KO mice. This discrepancy may explain 

the more measureable effect of resveratrol on Wt mice. 

Although Kineman et al. has previously reported an attenuation of AOM-induced 

ACF formation with the same resveratrol dose in a low fat diet (21), the lack of a statistically 

significant response to resveratrol in the present study is likely due to profound DSS- and 

obesity-induced colonic inflammation. However, differences between ACF assessment 

methods and colon regions assessed between the studies could also contribute to the lack of 

significance observed. It is possible that with a greater dietary resveratrol dose, significant 

results may be obtainable in this obesity model.  

In SVC culture, we showed that resveratrol is more effective at attenuating LPS-

induced inflammation in Wt compared to KO adipocytes. This supports our hypothesis that 

the anti-inflammatory effect of resveratrol is enhanced by adiponectin. However, basal IL6 

production is higher in KO adipocytes than Wt adipocytes. This is in contrast to our in vivo 

results showing higher circulating IL6 in Wt than KO mice. We also showed that resveratrol 

was able to reduce proliferation in KO- and Wt-conditioned media treated Caco-2 cells to the 

same level. The discrepancy between our in vivo and in vitro experiments is most likely due 

to differences in resveratrol dose and cancer stage, thereby demonstrating the importance of 

in vivo studies to assess the role of dietary and endogenous signaling molecules on 

tumorigenesis. The resveratrol doses used in cell culture were chosen to provide a 
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mechanistic analysis of resveratrol actions on Wt and KO conditions. However, the cell 

culture doses used would likely not be obtainable in mice fed our low dose resveratrol 

treatment diets. It is also important to note that the form of resveratrol used in these studies 

(trans-resveratrol aglycone) is not the form present naturally in foods but rather is the form 

of resveratrol typically used in supplements. 

In conclusion, we report a potential effect of resveratrol on obesity-associated colon 

tumorigenesis in male mice that is not evident in the absence of adiponectin. Moreover, we 

present a dimorphic gender response to resveratrol and carcinogen treatment. Further studies 

focusing on resveratrol dosage and this sexual dimorphic response are warranted to improve 

our understanding of the interaction between resveratrol and adiponectin in colon cancer 

development. 
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Tables 

Table 5. Diet Composition 

Ingredient LFC
1
 HFL

1
 HFL+R

1
 

Casein
2
 140 196 196 

Sucrose
2
 100 100 100 

Corn Starch
2
 456 88 88 

Maltodextrin
2
 155 155 155 

Soybean Oil
2
 50   

Lard
2
  360 360 

Cholesterol
2
  1.5 1.5 

Cellulose
2
 50 50 50 

Vitamin Mix
2
 10 10 10 

Mineral Mix
2
 35 35 35 

Choline Bitartrate
2 

 2.5 2.5 2.5 

L-Cystine
2
 1.8 1.8 1.8 

THBQ
2
 0.008 0.008 0.008 

Resveratrol Aglycone
3
     0.02 

     Total (g) 1000.0 1000.0 1000.0 

% Protein (Total kcal) 14.69 14.69 14.69 

% Carbohydrate (Total kcal) 73.65 25.4 25.4 

% Fat (Total kcal) 11.66 59.96 59.96 

Density (kcal/g) 3.86 5.4 5.4 
1
Adapted from AIN-93M Diet   

2
Harlan Teklad, Madison, WI   

3
Sigma-Aldrich, St. Louis, MO   
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Table 6 (A). Male Blood and Serum Parameters 

 

  KO Wt 

  HFL HRL+R HFL HRL+R 

Glucose (mg/dl)
a
 336 ± 22 365 ± 22 349 ± 23 320 ± 22 

Insulin (pg/ml)
b
 1745.96 ± 320.94

a
 1874.31 ± 320.94

a
 2958.22 ± 338.78

b
 2284.75 ± 320.94

a,b
 

Glucose:Insulin
c
 0.26 ± 0.05 0.26 ± 0.05 0.20 ± 0.05 0.15 ± 0.05 

Total AdipoQ (μg/ml)
d
 N/A N/A 22.72 ± 1.02 25.34 ± 1.02 

HMW AdipoQ (μg/ml)
e
 N/A N/A 5.32 ± 0.64 6.61 ± 0.65 

Leptin (ng/ml)
f
 11.64 ± 1.46 11.32 ± 1.39 15.33 ± 1.46 12.46 ± 1.46 

IL-6 (pg/ml)
g
 8.86 ± 1.49

a
 6.78 ± 1.41

a
 13.69 ± 1.59

b
 9.32 ± 1.58

a,b
 

MCP-1 (pg/ml)
h
 118.01 ± 13.30

b
 58.83 ± 20.86

a
 146.50 ± 17.26

b
 113.72 ± 14.10

b
 

Values are least squares means  s.e. Different letters denote statistical significance (P < 0.05). 
a
No significant treatment differences. 

b
Significant genotype effect, P = 0.018. 

c
Tendency for genotype effect, P = 0.099. 

d
Tendency for diet effect, P = 0.094. 

e
No significant treatment differences. 

f
No significant treatment differences. 

g
Significant diet effect, P = 0.043; significant genotype effect, P = 0.021. 

h
Significant diet effect, P = 0. 0.019; significant genotype effect, P = 0. 0.031. 
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Table 6 (B). Female Blood and Serum Parameters 

 

  KO Wt 

  HFL HRL+R HFL HRL+R 

Glucose (mg/dl)
a
 279 ± 22 330 ± 21 304 ± 21 286 ± 22 

Insulin (pg/ml)
b
 658.12 ± 135.19 902.49 ± 119.17 852.71 ± 113.55 956.64 ± 127.15 

Glucose:Insulin
c
 0.52 ± 0.10 0.49 ± 0.09 0.41 ± 0.09 0.42 ± 0.10 

Total AdipoQ (μg/ml)
d
 N/A N/A 42.54 ± 3.58 51.61 ± 3.70 

HMW AdipoQ (μg/ml)
e
 N/A N/A 11.17 ± 1.17 12.22 ± 1.14  

Leptin (ng/ml)
f
 4.60 ± 1.32 4.91 ± 1.19 6.61 ± 1.19 5.83 ± 1.25 

IL-6 (pg/ml)
g
 7.09 ± 1.82 7.90 ± 1.56 10.44 ± 1.49 9.69 ± 1.56 

MCP-1 (pg/ml)
h
 132.16 ± 31.36 124.81 ± 23.83 157.71 ± 65.00 176.72 ± 36.65 

a
No significant treatment differences. 

b
No significant treatment differences. 

c
No significant treatment differences. 

d
Tendency for diet effect, P = 0.099. 

e
No significant treatment differences. 

f
No significant treatment differences. 

g
No significant treatment differences. 

h
No significant treatment differences. 
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Table 7. Serum parameter and lesion correlations 

  Male Female 

Serum Parameters ACF Total Lesions ACF Total Lesions 

Total Adiponectin -0.49 (0.03) -0.40 (0.09) -0.41 (0.10) -0.41 (0.10) 

Leptin -0.25 (0.13) -0.30 (0.07) 0.16 (0.36) 0.18 (0.31) 

IL-6 -0.19 (0.26) -0.15 (0.36) 0.80 (<0.0001) 0.82 (<0.0001) 

TNF-α 0.38 (0.098) 0.43 (0.06) 0.83 (<0.0001) 0.84 (<0.0001) 

MCP-1 0.59 (0.02) 0.45 (0.08) 0.43 (0.096) 0.46 (0.07) 

Values are correlation (p-value). 
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Figures 

 

 

Figure 7. HFL causes a significant increase in weight gain and blood glucose concentrations 

of Wt mice, and this is attenuated by RSV. 

Wild type weight gain and blood glucose. (A) Significant diet effect, P < 0.001; tendency for 

sex effect, P = 0.056. (B) Significant diet effects, P = 0.0064. 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 104 

 

Figure 8. RSV had a tendency to attenuate weight gain in Wt but not KO mice without 

affecting food intake. 

 

Weight gain and average daily intake. Males (A,B); Females (C,D). (A) Significant genotype 

effect, P = 0.0009. (C) Tendency for diet effect, P = 0.065. (D) Tendency for genotype effect, 

P = 0.099.  
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Figure 9. RSV had a tendency to increase percent body fat and decrease percent lean mass 

in male Wt but not KO mice. 

Percent total body fat and lean. Males (A,B); Females (C,D). (A) Significant genotype effect, 

P = 0.0045. (B) Significant genotype effect, P = 0.0077. 
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Figure 10. RSV significantly decreased adipocyte area in Wt but not KO female mice. 

Gonadal adipose tissue adipocyte size. Males (A,B); Females (C,D). (A) Tendency for 

genotype effect, P = 0.095. (C) Tendency for diet effect, P = 0.084. B,D: KO, HFL, top left; 

KO, HFL+R, top right; Wt, HFL, bottom left; Wt, HFL+R, bottom right. 
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Figure 11. RSV has a tendency to decrease AOM-induced early and total lesion number in 

male Wt but not KO mice. 

Colonic aberrant crypt foci and total lesions represented as lesion number per mm distal 

colon. Average colon section length was 39 mm, and an average of 4 lesions were counted 

per section. Males (A,B); Females (C,D). (A) Tendency for diet*genotype interaction, P = 

0.092. (B) Tendency for diet*genotype interaction, P = 0.066. (C) Tendency for genotype 

effect, P = 0.062. (D) Tendency for genotype effect, P = 0.096. (E) Representative ACF. (F) 

Representative MDF. (G) Representative adenoma. 
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Figure 12. Proliferation is attenuated in SVCs and Caco-2 cells by RSV. 

SVC and Caco-2 cell proliferation. (A) SVC BrdU incorportation. Significant effect of SVC 

genotype, P = 0.0338. Tendency for effect of RSV concentration, P = 0.0886. Significant 

SVC*RSV interaction, P = 0.0116. (B) Caco-2 BrdU incorporation. Significant effect of 

SVC genotype, P = 0.0003. Significant effect of RSV concentration, P < 0.0001. Significant 

SVC*RSV interaction, P = 0.0001. 
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Figure 13. Adiponectin interacts with RSV to attenuate LPS-induced inflammation in 

adipocytes, but not Caco-2 cells. 

SVC and Caco-2 inflammation. (A) SVC culture medium IL-6. Significant effect of SVC 

genotype, P <0.0001. Significant effect of RSV concentration, P < 0.0001. Significant 

SVC*RSV interaction, P = 0.002. (B) Caco-2 culture medium IL-6. Tendency for effect of 

SVC genotype, P = 0.07. Significant effect of RSV concentration, P < 0.0001. Tendency for 

SVC*RSV interaction, P = 0.06. 
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Abstract 

 Resveratrol (RSV) has been shown to inhibit the metabolic effects of obesity as well 

as colon tumorigenesis and has recently been shown to attenuate obesity-associated colon 

tumorigenesis. Moreover, RSV is a known activator of the mediators of inflammation, sirtuin 

1 (Sirt1) and AMP-activated protein kinase (AMPK). However, the roles of Sirt1 and AMPK 

in the anti-inflammatory function of RSV are not fully elucidated. The aim of this study was 

to compare the roles of Sirt1 and AMPK in RSV’s attenuation of LPS-induced inflammation 

among human adipocytes, HT29 colon cancer cells, and U937 monocytes. This was 

investigated through the use of EX 527, a Sirt1 inhibitor, and Compound C, an AMPK 

inhibitor.  In adipocytes, RSV attenuated LPS-induced MCP-1 production in part through 

activation of Sirt1 but not AMPK. Conversely, Compound C reversed RSV’s attenuation of 

LPS-induced lipolysis suggesting a role for AMPK in the metabolic effects of RSV. In HT29 

cells, Sirt1 mediated RSV’s effect on LPS-induced reactive oxygen species production and 

proliferation. However, RSV and EX 527 had no effect on IL-8 production. U937 cells 

exhibited LPS-induced inflammation that was attenuated by RSV with antagonistic roles of 

AMPK and Sirt1. Taken together, our data suggest that RSV elicits different molecular 

responses of AMPK and Sirt1 in the response to LPS stimulation among adipocytes, colon 

cancer cells, and monocytes. Further research is needed to elucidate how these cell and tissue 

types interact under RSV supplementation to prevent obesity-associated colon cancer.   
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Introduction 

Obesity is associated with elevated risk, reoccurrence, and mortality from colorectal 

cancer (1,2). The development of obesity-associated colon cancer requires the involvement 

of adipocytes, macrophages, and colon epithelial cell types as inflammatory mediators. The 

chronic, systemic inflammation characteristic of obesity is a result of increased adipose-

resident macrophages, adipose- and diet-derived saturated fatty acids, and increased colonic 

endotoxin transport and toll-like receptor 4 (TLR4) expression (3). Stimulation of TLR4 by 

circulating lipopolysaccharide (LPS) and saturated free fatty acids increases the activity of 

the pro-survival and pro-inflammatory transcription factors, nuclear factor-κ B (NF-κB) and 

activator protein 1 (AP-1) in adipocytes and macrophages (4). Subsequently, adipose- and 

macrophage-derived cytokines and reactive oxygen species directly contribute to colon 

tumorigenesis through promotion of survival and proliferation of damaged cells (5,6,7).  

Resveratrol (RSV, trans-3,5,4’ trihydroxystilbene), a polyphenol found naturally in 

grapes and red wine, has been demonstrated to have anti-tumorigenic and anti-obesity effects 

in human models studied in vivo and in vitro (8,9,10). Moreover, we recently demonstrated a 

tendency for RSV to attenuate obesity-associated colorectal cancer in a mouse model (11). 

Inhibition of both NF-κB and AP-1 pathways have been implicated in the action of RSV. In 

human myeloid, epithelial, and lymphoid cells, RSV was shown to prevent LPS-induced 

activation of NF-κB and AP-1 (12). Furthermore, treatment of 3T3-L1 murine adipocytes 

with LPS-stimulated RAW264.7-conditioned media resulted in ERK and NF-κB activation 

that was attenuated with RSV (13). Similarly, RSV or similar pterostilbene analogues have 

been reported to down-regulate NF-κB and p38 MAPK in HT-29 human colon cancer cells 

(14,15).  
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RSV is an activator of sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), 

and it is thought that Sirt1 and AMPK mediate the anti-inflammatory effects of RSV. 

Although there have been reports of the roles of Sirt1 (16,17,18,19) and AMPK (16,20) in 

the regulation of NF-κB and MAPK pathways in various cell types, the independent roles of 

RSV-induced Sirt1 and AMPK in attenuation of inflammation in obesity-associated colon 

cancer has not been fully elucidated. Moreover, we have previously shown that murine 

adipocytes and Caco-2 colon cancer cells respond differentially to RSV with respect to 

presence of adiponectin, an AMPK activator (11,21). Thus, the purpose of the experiments 

described herein was to mechanistically compare the response of cell types involved in 

obesity-associated colon cancer to RSV treatment under LPS stimulation.  

Materials and Methods 

Materials. Fetal bovine serum (FBS) and penicillin/streptomycin were purchased 

from Hyclone (Logan, UT). RPMI 1640 medium was purchased from American Type 

Culture Collection (ATCC, Manassas, VA). The NF-B p65 inhibitory peptide was 

purchased from Imgenex (IMG-2003, San Diego, CA). SB 203580, Cardamonin, EX 527, 

and Compound C were purchased from Tocris Bioscience (Ellisville, MO). All reagents not 

specified were purchased from Sigma (St. Louis, MO).  

Culturing of human adipocytes. Human subcutaneous pre-adipocytes pooled from 6 

non-diabetic, non-obese female donors were purchased from Zen Bio (Research Triangle 

Park, NC). Pre-adipocytes were cultured in low glucose DMEM with 10% FBS and 100 

U/ml penicillin and 100 µg/ml streptomycin. For differentiation to adipocytes, pre-adipocytes 

were grown to confluence and incubated in differentiation medium containing 100 nM 

human insulin, 33 μM biotin, 17 μM pantothenic acid, 0.1% ITS (insulin transferrin sodium 
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selenite) supplement, 5 μM Troglitazone, 1 μM dexamethasone, and 0.5 mM IBMX for 6 

days. Differentiation medium was removed at Day 6, and fresh medium containing 100 nM 

insulin, 33 μM biotin, 17 μM panthothenic acid, and 0.25 μM dexamethasone was applied 

every 2 days until experimental treatments were applied between Days 12-14.  

Culturing of HT29 human colon cancer and U937 human macrophages. HT29 and 

U937 cells were purchased from ATCC (Manassas, VA). HT29 cells were cultured in high 

glucose DMEM medium with 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin. 

U937 monocytes were cultured in RPMI 1640 medium with 10% FBS, 100 U/ml penicillin, 

and 100 µg/ml streptomycin. HT29 and U937 cells were plated at 1 x 10
6
 cell/ml for 

experimental treatments. 

Cell culture experiments. Differentiated human adipocytes (Day 12-14), HT29 colon 

cancer cells, and U937 monocytes were plated and cultured as described above. Treatment 

medium consisted of regular growth medium for each cell type with or without the addition 

of vehicle (0.1-0.5% DMSO), 1 μg/ml LPS, and 20 μM RSV. The following inhibitors were 

added concurrently with LPS and/or RSV treatment: 20 μM cardamonin (inhibitor of IκB 

degradation), 10 μM p65 inhibitory peptide, 20 μM SP 600125 (JNK inhibitor), 20 μM SB 

203580 (p38 inhibitor), 20 μM EX 527 (Sirt1 Inhibitor), and 10 μM Compound C (AMPK 

Inhibitor). All treatments were applied for 24 hours.  

Proliferation. BrdU reagent (Chemicon International, Temecula, CA) was applied to 

treated HT29 cells according to the manufacturers instructions and incubated for 8 hours. 

BrdU incorporation was detected by measuring absorbance at 450/550 nm. 

Reactive oxygen species production. ROS production was measured in confluent 

HT29 cells and adipocytes following the 24 hour incubation in treatment medium as 
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previously described (4). Briefly, treatment medium was removed and cells were rinsed in 

warm 1x phosphate buffered saline (PBS). The cells were incubated for 45 minutes at 37°C 

in 10 μM OxyBURST Green H2DCFDA (Invitrogen, Carlsbad, CA) in warm 1x PBS buffer. 

The detection agent was removed, and cells were rinsed 3 times with warm 1x PBS. 

Florescence was measured at absorbance and emission wavelengths of 495 nm and 527 nm, 

respectively. Data was normalized to protein concentration in each well as determined by 

bicinchoninic acid assay (BCA) (Pierce, Rockford, IL).  

Quantitative Real-Time PCR. RNA was isolated using acid-phenol reagent (TRIzol, 

Invitrogen, Carlsbad, CA), and possible DNA contamination was removed using DNase-Free 

(Ambion, Austin, TX). cDNA was synthesized using iScript (Bio-Rad, Hercules, CA). 

Standard curves were created for all primer pairs by cloning amplified cDNA into pGemT 

vector (Promega, Madison, WI) and sequenced to confirm the gene target. The primer 

sequences used are listed in Table 8. mRNA transcript abundance was quantified on an 

iCycler (Bio-Rad, Hercules, CA) with IQ™ SYBR Green Super Mix kit (Bio-Rad, Hercules, 

CA). Thermal cycling conditions were 95°C for 3 min followed by 40 cycles of 95°C for 15 

seconds, 60°C for 30 seconds, and 72°C for 30 seconds. Gene expression in each tissue was 

normalized to a housekeeper gene (β-Actin) and expressed as log starting quantity.  

Glycerol release. Glycerol release into treatment medium was measured in 

differentiated adipocytes. Free Glycerol Reagent was added to samples and standards as 

described by the manufacturer (Sigma, St. Louis, MO). Absorbance was measured at 540 nm. 

Cytokine and chemokine quantification. Secreted cytokines and chemokines were 

measured by Multiplex or ELISA. For Multiplex analysis, treatment medium was analyzed 

using the Human Cytokine/Chemokine Pre-Mixed 14 Plex Milliplex kit (Millipore, Billerica, 
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MA) on a Bioplex system (BioRad, Hercules, CA). ELISAs were used to measure human 

MCP-1 and IL-8 production in the culture medium (R&D Biosystems, Minneapolis, MN).  

Transcription factor activation. Nuclear extracts were isolated using the Cayman 

Nuclear Extraction Kit (Cayman Chemical, Ann Arbor, MI). NF-κB p65 transcription factor 

activation was measured by ELISA (Cayman Chemical, Ann Arbor, MI). AP-1 c-Jun 

transcription factor activation was measured by ELISA (TransAM AP-1 c-Jun, Active Motif, 

Carlsbad, CA). Data was normalized to protein concentration in each sample as determined 

by BCA (Pierce, Rockford, IL). 

Statistical analysis. Data was tested for normality by residual analysis. Data was 

analyzed using the general linear model procedure in SAS (Version 9.2; SAS Institute, Cary, 

NC) with culture treatment as the fixed effect. Quantitative PCR data was analyzed with 

RSV, LPS, and RSV*LPS interaction as fixed effects. Total protein concentrations or 

housekeeper mRNA transcript abundance were used as covariates for normalization of 

relevant analyses. Data is reported as least square means  s.e.m. Statistical significance is 

defined as p < 0.05 and tendency for significance as p ≤ 0.1. 

Results 

 We first compared the activation of the RSV downstream target pathways, MAPK 

and NF-κB, by LPS in monocytes, adipocytes, and colon cancer cells. A panel of 14 

cytokines and chemokines were measured in each cell type.  Each cell type expressed a 

unique cytokine and chemokine profile represented in Figure 14. In U937 monocytes, each 

inhibitor significantly attenuated LPS-induced IL-8 or MCP-1 production with the most 

robust reduction from the JNK inhibitor, SP 600125, and the non-specific NF-κB inhibitor, 

Cardamonin (Figure 14A,B). Similarly, LPS-induced IL-8 and TNF-α production were 
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significantly reduced in HT29 cells in response to all inhibitors (Figure 14C,D). Adipocytes 

showed a more variable response to the inhibitors, with a significant inhibition of IL-6 in 

response to all inhibitors and an inhibition of MCP-1 production in response to Cardamonin 

only (Figure 14E,F). Taken together, this data demonstrates that both NF-κB and MAPK 

pathways are important mediators of LPS-induced inflammatory cytokine and chemokine 

production in these cell types. 

To determine the potential roles of AMPK and Sirt1 in the regulation of LPS response 

by RSV, the AMPK and Sirt1 inhibitors, Compound C and EX 527, were utilized. In U937 

cells, AMPK or Sirt1 inhibitors in concert with RSV and LPS treatment reduced IL-8 

production greater than the combined treatment of RSV and LPS alone (Figure 15A). In 

HT29 cells, LPS increased IL-8 production, but the combined treatment of LPS and RSV was 

unable to significantly reduce LPS-induced inflammation (Figure 15B). Sirt1 inhibition 

resulted in no change in IL-8 production from that of the LPS and RSV treatment. 

Interestingly, AMPK inhibition of the LPS and RSV treatment significantly reduced both IL-

8 production and proliferation (Figure 15B, 16A). RSV decreased proliferation, and Sirt1 

inhibitor reversed the effects of RSV on ROS production and proliferation of HT29 cells 

(Figures 16A, 16B). In adipocytes, the Sirt1 but not AMPK, inhibitor reversed RSV’s 

inhibition of LPS-induced MCP-1 and ROS production. (Figures 15C, 16D). However, only 

the AMPK inhibitor significantly increased glycerol when added to the combined treatment 

of LPS and RSV in adipocytes. Thus, Sirt1 appears to be important in mediating the anti-

inflammatory effect of RSV in adipocytes and colon cancer cells while AMPK may be 

important in mediating metabolic effects. The metabolic effects of AMPK may be driven by 

RSV-induced increase in the insulin-sensitizing hormone, adiponectin. To this end, we 
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showed that RSV significantly increased adiponectin mRNA transcript abundance under 

vehicle conditions, but had no effect under LPS stimulation (Figure 17). 

To connect the pro-inflammatory endpoints to the downstream molecular targets of 

RSV, we identified the roles of AMPK and Sirt1 in transcription factor activation in the 

MAPK and NF-κB pathways. NF-κB p65 and c-Jun, a major component of the AP-1 

heterodimer, were chosen based on the successful attenuation of LPS-induced cytokine and 

chemokine production in the presence of p65 and JNK pathway inhibitors demonstrated in 

Figure 14.  In U937 monocytes under LPS stimulation, RSV had a tendency (P = 0.09) to 

decrease NF-κB p65 activation that was further decreased by Sirt1 inhibitor (Figure 18A). 

The opposite was observed for c-Jun activity whereby the AMPK inhibitor further decreased 

c-Jun activity compared to RSV’s effect on LPS (Figure 19A). In adipocytes, RSV 

significantly inhibited LPS-induced p65 activation, and RSV-induced inhibition was reversed 

to the level of LPS activation in the presence of both inhibitors (Figure 18C). The activation 

of c-Jun in adipocytes was less consistent. Interestingly, RSV significantly increased c-Jun 

activity under vehicle conditions (P = 0.001) and had a tendency to increase c-Jun activity 

under LPS stimulation (P = 0.1) (Figure 19C).  Our data suggests this effect of RSV was 

independent of AMPK or Sirt1. There was no observed effect of RSV or Sirt1 and AMPK 

inhibition on HT29 transcription factor activation (Figures 18B, 19B), suggesting that 

transcriptional regulation may be precluded by 24 hr. post-LPS stimulation in this cell type. 

Because Sirt1 was most effective in the anti-inflammatory action of RSV, we 

measured the transcriptional regulation of Sirt1 by RSV and LPS (Figure 20). In U937 and 

HT29 cells, Sirt1 transcription was elevated significantly by LPS treatment (Figures 20A, 

20B).  There was also a tendency for up-regulation of Sirt1 transcript by RSV under Vehicle 
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conditions in U937 cells (P = 0.1) and under LPS conditions in HT29 cells (0.07). In 

adipocytes, there were no significant treatment effects of RSV or LPS (Figure 20C). 

However, Sirt1 transcript had a tendency for up-regulation by RSV under vehicle conditions 

(P = 0.06) but not LPS.  

Discussion 

Adipocytes. We demonstrated herein that cell types involved in obesity-associated 

colon cancer responded to RSV by different mechanisms 24 hours after LPS stimulation. 

Adipocytes responded to LPS stimulation with elevated production of IL-6 and MCP-1, 

which was significantly attenuated by RSV. As evidenced by MCP-1 production in response 

to Sirt1 and AMPK inhibitors, Sirt1 but not AMPK in part mediated the anti-inflammatory 

effect of RSV. Similarly, Sirt1 but not AMPK reversed RSV’s inhibition of LPS-induced 

ROS generation. It is likely that the anti-inflammatory effect of RSV in adipocytes is 

mediated in part by inhibition of p65 activity. To this end, our data suggests that both AMPK 

and Sirt1 mediate RSV’s attenuation of p65 activity. Interestingly, c-Jun was increased by 

RSV independent of Sirt1 and AMPK in adipocytes. This finding is supported by a report by 

Deck et al. that showed RSV increases AP-1 activity in Hek293 cells (22). In contrast to the 

anti-inflammatory function of RSV in adipocytes, AMPK appeared to be an important 

regulator of RSV’s attenuation of LPS-induced lipolysis. Furthermore, RSV increased 

expression of the AMPK activator, adiponectin, in adipocytes. It is possible that in an in vivo 

obese scenario, this function of AMPK may indirectly impact inflammation through 

decreasing free fatty acid-induced inflammation (23). 

HT29 colon cancer cells. HT29 cells responded differentially to RSV compared to 

adipocytes. While LPS induced IL-8 and TNFα production in HT29 cells, RSV did not 
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significantly attenuate IL-8 production. In support of this, RSV has previously shown to have 

no effect on IL-8 gene expression in Caco-2 murine colon cancer cells (24). Interestingly, the 

combined treatment of AMPK inhibitor and RSV decreased IL-8 production, suggesting a 

RSV-independent role for AMPK under LPS stimulation. Sirt1 inhibition suggested a role for 

Sirt1 in mediating the attenuation of proliferation and ROS generation by RSV in HT29 cells. 

However, we did not detect an effect of RSV on p65 or c-Jun activity. This may be due to 

lack of continued LPS and RSV stimulation throughout the 24 hour treatment period or 

involvement of alternate NF-κB and AP-1 heterodimer components. 

U937 monocytes. Monocytes, although responsive to LPS and RSV, demonstrated 

opposite roles for AMPK and Sirt1. RSV attenuated LPS-induced IL-8 production, and both 

AMPK and Sirt1 inhibition amplified rather than reversed the RSV response. Similarly, Sirt1 

inhibition maximized RSV’s attenuation of p65 activity, and both AMPK and Sirt1 

maximized RSV’s attenuation of c-Jun activity. Interestingly, Sirt1 expression was elevated 

by LPS in monocytes as in HT29 cells. This may be explained by the increased Sirt1 

expression and nuclear accumulation but not activity shown by Liu et al. in development of 

LPS tolerance by a monocytic cell line (25). Conversely, RSV increased Sirt1 expression in 

HT29 but not U937 cells, suggesting that Sirt1 is differentially regulated by RSV under LPS 

stimulation between these cell types.  

Taken together, these results demonstrate that adipocytes, colon cancer cells, and 

monocytes respond to LPS stimulation with different cytokine and chemokine profiles, and 

RSV acts differentially on these inflammatory pathways among cell types. However, these 

cell types are not independent from one another in vivo. In obesity-associated colon 

tumorigenesis, monocytes infiltrate both adipose and colonic tissue, and locally interact with 
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these tissues to stimulate inflammation. Moreover, we have previously shown that the 

adipokine profile influences colon cancer cell proliferation and inflammation both in vitro 

and in vivo (11). Future in vivo studies aimed at investigating tissue-specific RSV signaling 

in obesity-associated colon tumorigenesis are warranted.  

There are limitations to this use of inhibitors that should be considered in the 

interpretation of these results.  First, the use of one inhibitor per target does not allow us to 

identify any bias or lack of specificity for that inhibitor.  For most meaningful data, multiple 

inhibitors should be used.  Second, we have not demonstrated in the cell lines used, that the 

target pathways were down-regulated by the inhibitors.  Finally, the intended specificity of 

the inhibitors for specific pathway components may not have an overall effect on the 

pathway.    
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Tables 

Table 8. Quantitative Real Time PCR Primers  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target Forward Primer Reverse Primer 

β-Actin  CAGCCATGTACGTTGCTATCCAGG AGGTCCAGACGCAGGATGGCATG 

Adiponectin ATCCAAGGCAGGAAAGGAGAACCT TGGTAAAGCGAATGGGCATGTTGG 

Sirt1 TCCTGGACAATTCCAGCCATCTCT TTCCAGCGTGTCTATGTTCTGGGT 

1
2
3
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Figure 14. Comparison of the roles of MAPK and NF-κB pathways in cytokine and 

chemokine response to LPS in the presence of specific inhibitors. 

 

SB 203580 (p38 Inhibitor), SP 600125 (JNK Inhibitor), Cardamonin (IκB degredation 

Inhibitor). (A,B) U937 monocytes, A: P < 0.0001, B: P < 0.0001. (C,D) HT29 colon cancer 

cells. C: P < 0.0001, D: P < 0.0001. (E,F) Adipocytes, E: P < 0.0001, F: P = < 0.0001. n = 8 

per treatment. 
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Figure 15. Sirt1 mediates the anti-inflammatory action of RSV.  

 

Compound C (AMPK Inhibitor), EX 527 (Sirt1 Inhibitor). (A) U937 monocytes, P < 0.0001. 

(B) HT29 colon cancer cells, P = < 0.0001. (C) Adipocytes, P = 0.0.006. n = 6 per treatment. 



www.manaraa.com

 126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Roles of AMPK and Sirt1 in ROS production, proliferation, and lipolysis. 

Compound C (AMPK Inhibitor), EX 527 (Sirt1 Inhibitor). (A) HT29 proliferation, P < 

0.0001. (B) HT29 ROS generation, P = 0.0004. (C) Adipocyte glycerol release, P < 0.0001. 

(D) Adipocyte ROS generation, P < 0.0001. n = 6 – 8 per treatment. 
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Figure 17. Effect of RSV and LPS on adiponectin expression in adipocytes. 

 

 RSV P = 0.082, LPS P = 0.89, RSV*LPS P = 0.06. n = 5 per treatment. 
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Figure 18. NF-κB p65 activity is differentially mediated by AMPK and Sirt1 in monocytes, 

colon cancer cells, and adipocytes. 

 

Compound C (AMPK Inhibitor), EX 527 (Sirt1 Inhibitor). (A) U937 monocytes, P = 0.016. 

(B) HT29 colon cancer cells, P = 0.33. (C) Adipocytes, P = 0.07, n = 6 per treatment. 
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Figure 19. AP-1 c-Jun activity is differentially mediated by AMPK and Sirt1 in monocytes, 

colon cancer cells, and adipocytes. 

 

Compound C (AMPK Inhibitor), EX 527 (Sirt1 Inhibitor). (A) U937 monocytes, P = 0.008. 

(B) HT29 colon cancer cells, P = 0.03. (C) Adipocytes, P = 0.0009, n = 6 per treatment. 
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Figure 20. Sirt1 mRNA transcript abundance is regulated by RSV and LPS. 

 

Compound C (AMPK Inhibitor), EX 527 (Sirt1 Inhibitor). (A) U937, RSV P = 0.21, LPS P = 

0.03, RSV*LPS P = 0.29. (B) HT29, RSV P = 0.06, LPS P = 0.02, RSV*LPS = 0.44 (C) 

Adipocyte, RSV P = 0.20, LPS P = 0.17, RSV*LPS P = 0.20. n = 5 per treatment. 
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CHAPTER 6. GENERAL CONCLUSIONS 

The incidence of obesity has recently risen dramatically in developed countries, 

resulting in increased risk of obesity-related morbidities such as colon cancer (1,2).  

Development of obesity-linked colon cancer is accompanied by a shift to an overall pro-

inflammatory adipokine environment with decreased circulating concentrations of the anti-

inflammatory adipokine, adiponectin. The role of adiponectin in colon cancer development 

has been investigated, yielding controversial results asserting that adiponectin both protects 

and promotes colon cancer in response to different dietary and carcinogenesis models (3,4). 

RSV, a dietary polyphenol, is proposed to have anti-obesity and anti-tumorigenic effects, 

which have been attributed in part to activation of SIRT1 and AMPK activation (5). 

However, the role of RSV in obesity-associated colon cancer has not been previously 

reported. 

We first sought to investigate the role of adiponectin in obesity-associated colon 

cancer through the use of an adiponectin knockout mouse model (Chapter 3). To this end, we 

treated adiponectin KO and Wt mice with a combined AOM/DSS treatment followed by 7 ½ 

weeks of high fat or low fat diet feeding. In this study, KO mice developed fewer lesions 

than Wt mice. This finding was in contrast to the proposed role of adiponectin in AOM 

models of colon cancer (4), but consistent with its reported role in the inflammatory DSS 

model (3). Moreover, we showed that lesion formation was differentially regulated by 

genotype, diet, and sex. Specifically, early lesions were regulated by diet whereas advanced 

lesions were regulated by diet and sex. The intermediate lesion type, adenoma, was regulated 

by diet, genotype, and sex. This was the first report of a disparity between lesion stage and 

the effect of adiponectin genotype, sex, and dietary treatment.  
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Interestingly, the high fat diet promoted pro-inflammatory gene expression in adipose 

tissue but not colon. This is likely due to the robust colonic inflammatory response initiated 

by the DSS treatment. Because the DSS treatment preceded the dietary treatments, all mice 

had substantial colonic immune cell infiltration independent of dietary treatment. The 

primary difference between the DSS and AOM models is initiation of inflammation. It has 

been suggested that in the AOM model, adiponectin functions to attenuate NF-κB signaling, 

resulting in decreased proto-oncogene activation and related tumorigenesis (4). Conversely, 

in the DSS model, adiponectin may be preventing NF-κB transcribed growth factors from 

repairing damaged epithelium, thus promoting colonic damage and tumorigenesis. This 

theory is supported by the findings of Fayad et al. that showed under DSS-induced pro-

inflammatory conditions, adiponectin binds growth factors preventing the repair of damaged 

epithelium (3). Thus, it is becoming evident that adiponectin may be effective at attenuating 

colonic tumorigenesis under non-inflammatory but not pro-inflammatory conditions. These 

duel roles of adiponectin require further investigation and likely explain the highly variable 

nature of data relating adiponectin to colon cancer in the human population. 

Because we showed that the adiponectin genotype primarily influenced early lesion 

development, we used our knockout mouse model at the ACF stage to evaluate the 

interaction between RSV and adiponectin in obesity-associated tumorigenesis (Chapter 4). In 

this study, RSV had a tendency to attenuate ACF formation in Wt but not KO mice. This was 

the first report of the tendency for an interaction between RSV and adiponectin in colon 

tumorigenesis. In addition to its effects on ACF, RSV also interacted with the adiponectin 

genotype to attenuate weight gain, adipocyte size, and insulin and IL-6 concentrations. With 

the exception of adipocyte size, this interaction was observed in male but not female mice. 
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This sex difference is most likely explained by the influence of reproductive hormones. In 

support of this, two studies have demonstrated an interaction between female reproductive 

hormones and obesity-related insulin signaling and inflammation in mouse models using 

established colon cancer cell lines (6,7). However, the effect of reproductive hormones is not 

well characterized under tumorigenic conditions. 

The absence of significant dietary effects is likely due to the use of low-dose RSV in 

combination with a high saturated fat diet and DSS treatment. We hypothesize that the dose 

of RSV used (20 mg/kg diet) was insufficient to overcome these inflammatory insults both at 

the tissue and circulation levels. The lack of a low fat control baseline for gene analysis may 

have limited the detection of attenuation of inflammatory gene expression by RSV in adipose 

tissue. Moreover, the Birt laboratory has previously demonstrated that this dose of RSV is 

effective at attenuating ACF formation in a low fat control AOM rodent model that lacked 

induction of inflammation (8).  

To further investigate the interaction between RSV and adiponectin at the cellular 

level, we isolated gonadal adipose-derived stromal vascular cells from adiponectin KO and 

Wt mice for treatment with RSV. We also generated conditioned media from the 

differentiated adipose-derived SVCs for treatment of Caco-2 colon cancer cells. These 

experiments showed that in adipocytes, RSV’s action was dependent on the presence of 

adiponectin to attenuate LPS-induced inflammation. Conversely, in colon cancer cells treated 

with adipocyte-conditioned media, RSV attenuated inflammation and cell proliferation in the 

presence and absence of adiponectin. This suggested differential mechanisms of RSV action 

between cell types. 
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Finally, we sought to compare the mechanistic role of RSV in LPS-induced 

inflammation across cell types involved in obesity-associated colon tumorigenesis (Chapter 

5). For this set of experiments, we utilized human colon cancer cells, monocytes, and 

adipocytes in which we compared the roles of AMPK and Sirt1 in RSV stimulated 

attenuation of LPS-induced inflammation and ROS production through use of an AMPK and 

a Sirt1 inhibitor. Our results suggest that RSV functions differentially between these cell 

types. In adipocytes, RSV attenuated LPS-induced MCP-1 production and lipolysis, and Sirt1 

and AMPK inhibitors reversed this, respectively. The action of RSV was mediated in part by 

downstream attenuation of p65 activation. In HT29 colon cancer cells, RSV failed to 

significantly inhibit IL-8 production, but did inhibit ROS generation and proliferation. The 

addition of the Sirt1 and AMPK inhibitors suggested that this was in part through Sirt1 but 

not AMPK signaling. U937 monocytes, in contrast to adipocytes and colon cancer cells, did 

not demonstrate a role for Sirt1 or AMPK in RSV’s attenuation of IL-8 production. It is 

important to note that we did not confirm Sirt1 or AMPK inhibition by the inhibitors used, 

and the data should therefore be interpreted with this in mind. Moreover, because only one 

inhibitor was tested for each Sirt1 and AMPK, the specificity and bias of each is unknown in 

these cell lines. 

These findings led us to propose a model for RSV function in prevention of obesity-

associated colon cancer. In this model, we hypothesize that RSV acts directly on adipocytes 

in adipose tissue to inhibit inflammation and metabolic dysregulation associated with obesity 

through activation of AMPK and Sirt1. In colon epithelial cells, we hypothesize that RSV 

attenuates proliferation and ROS production in part via Sirt1 activation. Moreover, we 

hypothesize that RSV-induced reduction of inflammation in adipose tissue will further 



www.manaraa.com

 135 

attenuate inflammation and proliferation in the colon. The anti-inflammatory effects of RSV 

on both adipose and colon tissues then inhibits monocyte infiltration and the propagation of 

inflammation in these tissues. Therefore, we propose that RSV attenuates obesity-associated 

colon cancer through its direct action on adipose and colon tissues. 

Overall, we have presented evidence that adiponectin, diet, and gender interact in the 

development of obesity-associated colon tumorigenesis under pro-inflammatory conditions. 

We further demonstrated that RSV is a promising therapeutic strategy for prevention of 

obesity-associated colon cancer through its interaction with adiponectin. Finally, we showed 

that RSV signals differentially between cells types involved in obesity-associated colon 

cancer to inhibit inflammation and ROS generation. Obesity-associated colon cancer is a 

multi-factorial disease, and effective preventative therapies should target both adipose and 

colon tissue. 

The continuation of this research can proceed in several directions. First, studies can 

be aimed at resolving the seemingly opposing roles of adiponectin in colon tumorigenesis. 

This would require the use of a variety of dietary and inflammatory conditions both in vivo 

and in vitro. Additionally, the observed differences between male and female responses to 

diet and carcinogen could be investigated. Because comparisons between sexes are rarely 

made in animal studies, this research could have a large impact on both the obesity and 

cancer research fields. To further study therapeutic strategies aimed at obesity-associated 

colon cancer, there is ample opportunity for testing and identification of novel compounds 

that target RSV signaling pathways and demonstrate similar or greater bioactivity than RSV 

itself. Furthermore, our mechanistic analysis of RSV action can be expanded to additional 

human cell lines and subsequently to an in vivo tumorigenesis model. Finally, the expression 
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profile of specific colonic lesion types throughout development from healthy tissue to 

carcinoma and the effect of RSV on each lesion type can be investigated. These findings 

would help identify the ideal window of time in the progression colon tumorigenesis for RSV 

treatment.  
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